scholarly journals Effects of Machining Parameters on the Quality in Machining of Aluminium Alloys Thin Plates

Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 927 ◽  
Author(s):  
Irene Del Sol ◽  
Asuncion Rivero ◽  
Antonio J. Gamez

Nowadays, the industry looks for sustainable processes to ensure a more environmentally friendly production. For that reason, more and more aeronautical companies are replacing chemical milling in the manufacture of skin panels and thin plates components. This is a challenging operation that requires meeting tight dimensional tolerances and differs from a rigid body machining due to the low stiffness of the part. In order to fill the gap of literature research on this field, this work proposes an experimental study of the effect of the depth of cut, the feed rate and the cutting speed on the quality characteristics of the machined parts and on the cutting forces produced during the process. Whereas surface roughness values meet the specifications for all the machining conditions, an appropriate cutting parameters selection is likely to lead to a reduction of the final thickness deviation by up to 40% and the average cutting forces by up to a 20%, which consequently eases the clamping system and reduces machine consumption. Finally, an experimental model to control the process quality based on monitoring the machine power consumption is proposed.

Mechanika ◽  
2020 ◽  
Vol 26 (3) ◽  
pp. 231-241 ◽  
Author(s):  
Mustafa ÖZDEMİR ◽  
Mehmet Tuncay KAYA ◽  
Hamza Kemal AKYILDIZ

In this study, effects of cutting speed (V), feed rate (f), depth of cut (a) and tool tip radius (R) on  surface roughness (Ra, Rz, and Rt) and cutting forces (radial force (Fx), tangential force (Fy), and feed force (Fz)) in hard finish turning processes of hardened 42CrMo4 (52 HRC) material was investigated experimentally. Taguchi’s mixed level parameter design (L18) is used for the experimental design (2x1,3x3). The signal-to-noise ratio (S/N) was used in the evaluation of test results.  By using Taguchi method, cutting parameters giving optimum surface roughness and cutting forces were determined. Regression analyses are applied to predict surface roughness and cutting forces. Analysis of variance (ANOVA) is used to determine the effects of the machining parameters on surface roughness and cutting forces. According to ANOVA analysis, the most important cutting parameters were found to be feed rate for surface roughness and depth of cut among cutting forces.  By conducting validation experiments, optimization was seen to be applied successfully.


Author(s):  
İsmail Kırbaş ◽  
Musa Peker ◽  
Gültekin Basmacı ◽  
Mustafa Ay

In this chapter, the impact of cutting parameters (depth of cut, cutting speed, feed, flow, rake angle, lead angle) on cutting forces in the turning process with regard to ASTM B574 (Hastelloy C-22) material has been investigated. Variance analysis has been applied in order to determine the factors affecting the cutting forces. The optimization of the parameters affecting the surface roughness has been obtained using response surface methodology (RSM) based on the Taguchi orthogonal experimental design. The accuracy of the developed models required for the estimation of the force values (Fx, Fy, Fz) is quite successful. In this study, where the R2 value has been used as the criterion/measure, accuracy values of 93.35%, 95.03%, and 95.09% have been achieved for Fx, Fy, and Fz, respectively. As a result of the ANOVA analysis, the most effective parameters for Fx at a 95% confidence interval are depth of cut, feed rate, flow, and rake angle. The most effective parameter for Fy is depth of cut, while the most effective parameters for Fz are depth of cut, feed rate, and flow, respectively.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 617 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Jarosław Korpysa

Surface roughness is among the key indicators describing the quality of machined surfaces. Although it is an aggregate of several factors, the condition of the surface is largely determined by the type of tool and the operational parameters of machining. This study sought to examine the effect that particular machining parameters have on the quality of the surface. The investigated operation was the high-speed dry milling of a magnesium alloy with a polycrystalline diamond (PCD) cutting tool dedicated for light metal applications. Magnesium alloys have low density, and thus are commonly used in the aerospace or automotive industries. The state of the Mg surfaces was assessed using the 2D surface roughness parameters, measured on the lateral and the end face of the specimens, and the end-face 3D area roughness parameters. The description of the surfaces was complemented with the surface topography maps and the Abbott–Firestone curves of the specimens. Most 2D roughness parameters were to a limited extent affected by the changes in the cutting speed and the axial depth of cut, therefore, the results from the measurements were subjected to statistical analysis. From the data comparison, it emerged that PCD-tipped tools are resilient to changes in the cutting parameters and produce a high-quality surface finish.


2009 ◽  
Vol 69-70 ◽  
pp. 418-422
Author(s):  
L.D. Wu ◽  
Cheng Yong Wang ◽  
D.H. Yu ◽  
Yue Xian Song

Hardened steel P20 at 50 HRC is milled at high speed by TiN coated and TiAlN coated solid carbide straight end mills, and the cutting forces and tool wear are measured. The result shows that TiAlN coated tool is more suitable for cutting hardened steel at high speed. Then the hardened steel is milled under different cutting parameters. It is indicated that the effect of cutting speed on cutting forces is small, but the effect of cutting speed on machine vibration should be considered. Increase feed per tooth or radial depth of cut will increase the cutting forces.


2014 ◽  
Vol 875-877 ◽  
pp. 652-656
Author(s):  
Issam Hanafi ◽  
Khamlichi Abdellatif ◽  
Francisco Mata Cabrera

The machining parameters for turning of PEEK CF30 using TiN coated tools under dry conditions have been optimized by using Non dominated Sorting Genetic Algorithm (NSGA-II), a non dominated solution set is obtained. The objectives considered are the minimisation of machining force thereby minimising specific cutting pressure as function of the main operating parameters. The results indicated that the minimal cutting parameters are preferred for reducing the machining force, and the minimal cutting speed, medium depth of cut and high feed rate are recommended for minimal specific cutting machining. As per the requirement, the manufacturing engineer should select the proper cutting parameters.


2020 ◽  
Vol 65 (1) ◽  
pp. 10-26
Author(s):  
Septi Boucherit ◽  
Sofiane Berkani ◽  
Mohamed Athmane Yallese ◽  
Riad Khettabi ◽  
Tarek Mabrouki

In the current paper, cutting parameters during turning of AISI 304 Austenitic Stainless Steel are studied and optimized using Response Surface Methodology (RSM) and the desirability approach. The cutting tool inserts used in this work were the CVD coated carbide. The cutting speed (vc), the feed rate (f) and the depth of cut (ap) were the main machining parameters considered in this study. The effects of these parameters on the surface roughness (Ra), cutting force (Fc), the specific cutting force (Kc), cutting power (Pc) and the Material Removal Rate (MRR) were analyzed by ANOVA analysis.The results showed that f is the most important parameter that influences Ra with a contribution of 89.69 %, while ap was identified as the most significant parameter (46.46%) influence the Fc followed by f (39.04%). Kc is more influenced by f (38.47%) followed by ap (16.43%) and Vc (7.89%). However, Pc is more influenced by Vc (39.32%) followed by ap (27.50%) and f (23.18%).The Quadratic mathematical models, obtained by the RSM, presenting the evolution of Ra, Fc, Kc and Pc based on (vc, f, and ap) were presented. A comparison between experimental and predicted values presents good agreements with the models found.Optimization of the machining parameters to achieve the maximum MRR and better Ra was carried out by a desirability function. The results showed that the optimal parameters for maximal MRR and best Ra were found as (vc = 350 m/min, f = 0.088 mm/rev, and ap = 0.9 mm).


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4427
Author(s):  
Antoni Świć ◽  
Arkadiusz Gola ◽  
Olga Orynycz ◽  
Karol Tucki

Low-rigidity thin-walled parts are components of many machines and devices, including high precision electric micro-machines used in control and tracking systems. Unfortunately, traditional machining methods used for machining such types of parts cause a significant reduction in efficiency and in many cases do not allow obtaining the required accuracy parameters. Moreover, they also fail to meet modern automation requirements and are uneconomical and inefficient. Therefore, the aim of provided studies was to investigate the dependency of cutting forces on cutting parameters and flank wear, as well as changes in cutting forces induced by changes in heating current density and machining parameters during the turning of thin-walled parts. The tests were carried out on a specially designed and constructed turning test stand for measuring cutting forces and temperature at specific cutting speed, feed rate, and depth of cut values. As part of the experiments, the effect of cutting parameters and flank wear on cutting forces, and the effect of heating current density and turning parameters on changes in cutting forces were analyzed. Moreover, the effect of cutting parameters (depth of cut, feed rate, and cutting speed) on temperature has been determined. Additionally, a system for controlling electro-contact heating and investigated the relationship between changes in cutting forces and machining time in the operations of turning micro-machine casings with and without the use of the control system was developed. The obtained results show that the application of an electro-contact heating control system allows to machine conical parts and semi-finished products at lower cutting forces and it leads to an increase in the deformation of the thin-walled casings caused by runout of the workpiece.


Author(s):  
Padmaja Tripathy ◽  
Kalipada Maity

This paper presents a modeling and simulation of micro-milling process with finite element modeling (FEM) analysis to predict cutting forces. The micro-milling of Inconel 718 is conducted using high-speed steel (HSS) micro-end mill cutter of 1mm diameter. The machining parameters considered for simulation are feed rate, cutting speed and depth of cut which are varied at three levels. The FEM analysis of machining process is divided into three parts, i.e., pre-processer, simulation and post-processor. In pre-processor, the input data are provided for simulation. The machining process is further simulated with the pre-processor data. For data extraction and viewing the simulated results, post-processor is used. A set of experiments are conducted for validation of simulated process. The simulated and experimental results are compared and the results are found to be having a good agreement.


Author(s):  
Zulay Cassier ◽  
Patricia Mun˜oz-Escalona ◽  
Jannelly Moreno

Stainless steels have a great application in the manufacturing process especially due to their characteristic high corrosion resistance. The machining of these materials, the study of the cutting forces, and the power required for the cutting are important parameters to be evaluated. Their relationship with other cutting variables process is crucial for the optimization of the machining process. The results of this research are empirical expressions relating cutting parameters (cutting speed, feed rate and depth of cut) to cutting forces for each stainless steel studied, AISI 304, AISI 420 and AISI 420HT (HT: Heat treated). A general expression was also developed which includes the mechanical properties of these stainless steels. These results enable the user to predict cutting forces when using a turning process.


2013 ◽  
Vol 641-642 ◽  
pp. 367-370
Author(s):  
Gui Qiang Liang ◽  
Fei Fei Zhao

Abstract In the present study, an attempt has been made to investigate the effect of cutting parameters (cutting speed, feed rate and depth of cut) on cutting forces (feed force, thrust force and cutting force) and surface roughness in milling of Quartz glas using diamond wheel. The cutting process in the up-cut milling of glass is discussed and the cutting force measured. The cutting force gradually increases with the cutter rotation at the beginning of the cut, and oscillates about a constant mean value after a certain undeformed chip thickness. The results show that cutting forces and surface roughness do not vary much with experimental cutting speed in the range of 55–93 m/min. The suggested models of cutting forces and surface roughness and adequately map within the limits of the cutting parameters considered.


Sign in / Sign up

Export Citation Format

Share Document