scholarly journals DHA-Rich Aurantiochytrium Biomass, a Novel Dietary Supplement, Resists Degradation by Rumen Microbiota without Disrupting Microbial Activity

2022 ◽  
Vol 2 (1) ◽  
pp. 53-72
Author(s):  
Teemu Rinttilä ◽  
Colm A. Moran ◽  
Juha Apajalahti

We first sought to evaluate the effect of dietary supplementation with the docosahexaenoic acid (DHA)-rich microalgae, Aurantiochytrium limacinum (AURA), on rumen fermentation and the resistance of DHA to degradation and biohydrogenation by rumen microbes through ex vivo fermentation experiments. Subsequently, we sought to quantify the diet-derived DHA content of milk and the impact of AURA on microbial composition and metabolism in a pilot feeding trial with rumen-cannulated dairy cows. To achieve our aims, rumen fluid from cannulated cows was used as inoculum, and the effect of AURA inclusion on fermentation ex vivo was examined. At doses corresponding to the amount of AURA recommended for commercial production animals, only ~10% of DHA was degraded or biohydrogenated by rumen microorganisms. The results show that feeding with AURA had no effect on either total bacterial density or short-chain fatty acid production. Real-time quantitative PCR analysis of the rumen fluid samples collected during a seven-week in vivo trial revealed that microbes related to lactic acid metabolism and methanogenesis were significantly suppressed by the AURA-supplemented diet. The DHA concentration in milk increased over 25-fold with the AURA-supplemented diet and dropped by 30–40% within one week of washout. The addition of A. limacinum biomass to dairy cow diets resulted in positive effects on rumen microbial composition with no adverse effect on fermentation activity. AURA-derived DHA was stable, with only modest degradation in the rumen, and was successfully deposited in milk. This is the first study to investigate the effect of supplementing the diet of dairy cows with a protist-based biomass, namely, on important rumen fermentation parameters and on DHA deposition in milk, using a combination of ex vivo and in vivo approaches.

2021 ◽  
Vol 22 (2) ◽  
pp. 674
Author(s):  
Óscar Darío García-García ◽  
Marwa El Soury ◽  
David González-Quevedo ◽  
David Sánchez-Porras ◽  
Jesús Chato-Astrain ◽  
...  

Acellular nerve allografts (ANGs) represent a promising alternative in nerve repair. Our aim is to improve the structural and biomechanical properties of biocompatible Sondell (SD) and Roosens (RS) based ANGs using genipin (GP) as a crosslinker agent ex vivo. The impact of two concentrations of GP (0.10% and 0.25%) on Wistar rat sciatic nerve-derived ANGs was assessed at the histological, biomechanical, and biocompatibility levels. Histology confirmed the differences between SD and RS procedures, but not remarkable changes were induced by GP, which helped to preserve the nerve histological pattern. Tensile test revealed that GP enhanced the biomechanical properties of SD and RS ANGs, being the crosslinked RS ANGs more comparable to the native nerves used as control. The evaluation of the ANGs biocompatibility conducted with adipose-derived mesenchymal stem cells cultured within the ANGs confirmed a high degree of biocompatibility in all ANGs, especially in RS and RS-GP 0.10% ANGs. Finally, this study demonstrates that the use of GP could be an efficient alternative to improve the biomechanical properties of ANGs with a slight impact on the biocompatibility and histological pattern. For these reasons, we hypothesize that our novel crosslinked ANGs could be a suitable alternative for future in vivo preclinical studies.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 132-132
Author(s):  
Sergio Calsamiglia ◽  
Maria Rodriguez-Prado ◽  
Gonzalo Fernandez-Turren ◽  
Lorena Castillejos

Abstract In the last 20 years there has been extensive in vitro research on the effects of plant extracts and essential oils on rumen microbial fermentation. The main objectives have been to improve energy metabolism through a reduction in methane emissions and an increase in propionate production; and to improve protein metabolism by reducing proteolysis and deamination. While the positive results from in vitro studies has stimulated the release of commercial products based on blends of essential oils, there is limited in vivo evidence on the rumen fermentation and production performance effects. A literature search was conducted to select in vivo studies where information on rumen fermentation and animal performance was reported. For dairy cattle, we identified 37 studies of which 21 were adequate to test production performance. Ten studies reported increases and 3 decreases in milk yield. For beef cattle, we identified 20 studies with rumen fermentation profile and 22 with performance data. Average daily gain improved in 7 and decreased in 1 study. Only 1 out of 16 studies reported an improvement in feed efficiency. Data indicate that out of more than 500 products tested in vitro, only around 20 have been tested in vivo in different mixtures and doses. The use of statistical approaches will allow to describe the conditions, doses and responses in dairy and beef cattle performance. The search for postruminal effects offers another alternative use. Evidence for effects on the intestinal and systemic effects on the immune system and antioxidant status (i.e., capsicum, garlic, eugenol, cinnamaldehyde curcuma, catechins, anethol or pinene), and in the modulation of metabolic regulation (capsicum, cinnamaldehyde, curcuma or garlic) may open the opportunity for future applications. However, stability of the product in the GI tract, description of the mechanisms of action and the impact of these changes on performance needs to be further demonstrated.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 354
Author(s):  
Subir Roy Chowdhury ◽  
Cheryl Peltier ◽  
Sen Hou ◽  
Amandeep Singh ◽  
James B. Johnston ◽  
...  

Mitochondrial respiration is becoming more commonly used as a preclinical tool and potential biomarker for chronic lymphocytic leukemia (CLL) and activated B-cell receptor (BCR) signaling. However, respiration parameters have not been evaluated with respect to dose of ibrutinib given in clinical practice or the effect of progression on ibrutinib treatment on respiration of CLL cells. We evaluated the impact of low and standard dose ibrutinib on CLL cells from patients treated in vivo on mitochondrial respiration using Oroboros oxygraph. Cytokines CCL3 and CCL4 were evaluated using the Mesoscale. Western blot analysis was used to evaluate the BCR and apoptotic pathways. We observed no difference in the mitochondrial respiration rates or levels of plasma chemokine (C-C motif) ligands 3 and 4 (CCL3/CCL4), β-2 microglobulin (β-2 M) and lactate dehydrogenase (LDH) between low and standard doses of ibrutinib. This may confirm why clinical observations of the safety and efficacy of low dose ibrutinib are observed in practice. Of interest, we also observed that the mitochondrial respiration of CLL cells paralleled the increase in β-2 M and LDH at progression. Our study further supports mitochondrial respiration as a biomarker for response and progression on ibrutinib in CLL cells and a valuable pre-clinical tool.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1959-1959
Author(s):  
Jeong A Park ◽  
Hong fen Guo ◽  
Hong Xu ◽  
Nai-Kong V. Cheung

Background Ex Vivo Armed T-cells (EVAT) carrying zeptomoles (10-21M) of T-cell engaging GD2-bispecific antibody (GD2-EVAT) or HER2-bispecific antibodies (HER2-EVAT) have potent anti-tumor activity against GD2(+) and/or HER2(+) solid tumors. Strategies to further optimize this approach are highly relevant. PD-1 is a key immune checkpoint receptor expressed mainly by activated T-cells and mediates immune suppression by binding to its ligands PD-L1 or PD-L2. Upregulation of PD-L1 has been found in many cancers including osteosarcoma and associated with aggressive disease and poor outcome. While the use of immune checkpoint inhibitors (ICIs) seems logical, the ideal timing when combined with T-cell engaging bispecific antibody (T-BsAb) or EVAT has yet to be defined. Here, we described the effects of anti-PD-1 or anti-PD-L1 antibodies on GD2-EVAT or HER2-EVAT therapy and explored the impact of its timing in the treatment of osteosarcoma which is GD2(+), HER2(+) and PD-L1(+). Methods GD2-BsAb and HER-BsAb were built using the IgG(L)-scFv format (Can Immunol Res, 3:266, 2015, Oncoimmunology, PMID:28405494). T-cells from healthy volunteer donors were isolated, and cultured ex vivo in the presence of CD3/CD28 beads plus 30 IU/mL of interleukin 2 (IL-2). Between day 7 and day 14, activated T-cells (ATCs) were harvested and armed for 20 minutes at room temperature with GD2-BsAb or HER2-BsAb. In vivo anti-tumor activity against GD2(+), HER2(+), and PD-L1(+) osteosarcoma cell line xenografts was tested in BALB-Rag2-/-IL-2R-γc-KO mice. Anti-human PD-1 antibody (pembrolizumab, anti-PD-1) or anti-human PD-L1 antibody (atezolizumab, anti-PD-L1) were tested for synergy with GD2-EVAT or HER2-EVAT therapy. Results The PD-1 expression increased among T-cells that circulated in the blood, that infiltrated the spleen or the tumor after EVAT therapy. While anti-PD-L1 combination therapy with GD2-EVAT or HER2-EVAT improved anti-tumor response against osteosarcoma (P=0.0123 and P=0.0004), anti-PD-1 did not (all P>0.05). The addition of anti-PD-L1 significantly increased T-cell survival in blood and T-cell infiltration of tumor when compared to GD2-EVAT or HER2-EVAT alone (all P<0.0001). Treatment of GD2-EVAT or anti-PD-L1 plus GD2-EVAT downregulated GD2 expression on tumors, but anti-PD-1 plus GD2-EVAT did not. For the next step we tested the impact of different combination schedules of ICIs on GD2-EVAT therapy. Concurrent anti-PD-1 (6 doses along with GD2-EVAT therapy) interfered with GD2-EVAT, while sequential anti-PD-1 (6 doses after GD2-EVAT) did not make a significant effect (P>0.05). On the other hand, while the concurrent use of anti-PD-L1 did not show benefit on GD2-EVAT, sequentially administered anti-PD-L1 produced a significant improvement in tumor control when compared to anti-PD-L1 or GD2-EVAT alone (P=0.002 and P=0.018). When anti-PD-L1 treatment was extended (12 doses after GD2-EVAT), the anti-tumor effect was most pronounced compared to GD2-EVAT alone (P <0.0001), which translated into improved survival (P=0.0057). These in vivo anti-tumor responses were associated with increased CD8(+) tumor infiltrating lymphocytes (TILs) of tumor. Conclusion In the arming platform, large numbers of target-specific T-cells can be generated, and this EVAT therapy is a highly effective cellular treatment with high potency in preclinical models. In addition, the advantage of ex vivo cytokine release following T-cell arming and activation could reduce or avoid life threatening cytokine storm if such activation was to proceed in vivo. Adoptive T-cell therapy induced immune response upregulates the inhibitory immune checkpoint PD-1/PD-L1 pathway, and combination treatment with anti-PD-L1 antibody, especially when combined as sequential therapy and continuously treated, significantly improved anti-tumor effect of EVAT, partly through increase in CD8(+) TILs infiltration. Disclosures Xu: MSK: Other: co-inventors in patents on GD2 bispecific antibody and HER2 bispecific antibody. Cheung:Ymabs: Patents & Royalties, Research Funding.


2011 ◽  
Vol 79 (1) ◽  
pp. 16-25 ◽  
Author(s):  
Qendrim Zebeli ◽  
Sarah J Terrill ◽  
Alberto Mazzolari ◽  
Suzanna M Dunn ◽  
Wen Z Yang ◽  
...  

This study evaluated the effects of intraruminal administration ofMegasphaera elsdeniion ruminal fermentation patterns, the profile of plasma metabolites, and milk yield and composition of mid-lactation dairy cows. Eight primiparous, ruminally cannulated Holstein cows were arranged in a paired 2×2 crossover design. Cows were randomly assigned to one of two treatments: 1) intraruminal inoculation of 35 ml suspension per day ofM. elsdeniiATCC 25940 (MEGA), containing 108cfu/ml of bacteria, dissolved in 35 ml of saline (0·15m), or 2) carrier alone (35 ml saline; CTR). Both postprandial and preprandial rumen volatile fatty acids (VFA) and plasma metabolite measurements were analysed. Postprandial VFA patterns were affected the most, with butyrate (P<0·01) and valerate (P<0·01) proportions increasing, and acetate (P<0·01), isobutyrate (P=0·05) and isovalerate (P<0·01) decreasing in MEGA cows. Preprandial data measured at various days showed that MEGA dosage tended to increase the molar proportion of propionate (P=0·09) and lower the acetate to propionate ratio (P=0·07) in the rumen fluid. There was no effect of treatment on rumen pH and on the concentration of lactate in the rumen as well as on selected preprandial plasma metabolites. Postprandial plasma concentrations of cholesterol tended to increase (P=0·07) in MEGA cows compared with CTR. Concentrations of non-esterified fatty acids (NEFA) in the plasma were lower in MEGA cows after the morning feeding (P<0·01). Sampling hour also affected plasma NEFA in this study. Plasma β-hydroxybutyrate (BHBA) were not affected by the treatment (P>0·05); however, after the morning feeding BHBA concentration was increased in both groups of cows. Dry matter intake and milk yield and composition were not affected by treatment. In conclusion, results indicate thatM. elsdeniihas the potential to modulate the rumen fermentation profile in mid-lactation Holstein cows, but these effects were only slightly reflected in changes in plasma metabolites and milk composition.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Martin Rouer ◽  
Martin Rouer ◽  
Jean-Marc Alsac ◽  
Jean-Baptiste Michel

Introduction Biological study of the impact of endovascular aortic repair (EVAR) on pathophysiology of aortic abdominal aneurysms (AAA) can only be performed indirectly in humans, by imaging or search for peripheral biomarkers in the circulating blood. Therefore biological mechanism’s modifications into the aneurismal wall related to its endovascular exclusion are still to be elucidated, and small animal models should bring a valuable help in this field. We describe a new experimental model of stentgraft implantation for the exclusion of AAA in rats. Methods Aneurysms were induced as previously described by intra-aortic elastase injection in Wistar rats, or by aortic decellularized xenograft transplantation in Lewis rats. At least 15 days later, the midline laparotomy was reopened, and 3mm covered stentgraft were inserted and deployed in the AAA to obtain its exclusion. The patency of the graft and the AAA exclusion could be assessed by a global arteriogram through the carotid artery. After closure of the laparotomy, the rats were awakened and returned to a normal diet. Results This experimental model of AAA exclusion by a stentgraft allows many in vivo and ex vivo studies of the pathophysiology of AAA after EVAR. Histological modifications of the aortic wall and the intra-luminal thrombus could be assessed. The impact of EVAR on the adventitial immuno-inflammatory activity could be studied by different imaging such as MRI, scintigraphy or PET-scan. In situ biological and enzymatic activities could be evaluated to better understand the local mechanisms leading to AAA shrinkage or expansion after EVAR. Conclusion Exclusion by stentgraft of experimental AAA in rats is the first described model of EVAR in small animals. It is feasible and reproducible for both elastase and xenograft experimental AAA models. This model will definitely help to a better analysis and understanding of the impact of stentgrafting on biological mechanisms in the aneurismal wall, that lead to EVAR success with shrinkage of aneurismal sac or EVAR failure with its continuing expansion.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Payal Joglekar ◽  
Hua Ding ◽  
Pablo Canales-Herrerias ◽  
Pankaj Jay Pasricha ◽  
Justin L. Sonnenburg ◽  
...  

ABSTRACT Gut-derived immunoglobulin A (IgA) is the most abundant antibody secreted in the gut that shapes gut microbiota composition and functionality. However, most of the microbial antigens targeted by gut IgA remain unknown, and the functional effects of IgA targeting these antigens are currently understudied. This study provides a framework for identifying and characterizing gut microbiota antigens targeted by gut IgA. We developed a small intestinal ex vivo culture assay to harvest lamina propria IgA from gnotobiotic mice, with the aim of identifying antigenic targets in a model human gut commensal, Bacteroides thetaiotaomicron VPI-5482. Colonization by B. thetaiotaomicron induced a microbe-specific IgA response that was reactive against diverse antigens, including capsular polysaccharides, lipopolysaccharides, and proteins. IgA against microbial protein antigens targeted membrane and secreted proteins with diverse functionalities, including an IgA specific against proteins of the polysaccharide utilization locus (PUL) that are necessary for utilization of fructan, which is an important dietary polysaccharide. Further analyses demonstrated that the presence of dietary fructan increased the production of fructan PUL-specific IgA, which then downregulated the expression of fructan PUL in B. thetaiotaomicron, both in vivo and in vitro. Since the expression of fructan PUL has been associated with the ability of B. thetaiotaomicron to colonize the gut in the presence of dietary fructans, our work suggests a novel role for gut IgA in regulating microbial colonization by modulating their metabolism. IMPORTANCE Given the significant impact that gut microbes have on our health, it is essential to identify key host and environmental factors that shape this diverse community. While many studies have highlighted the impact of diet on gut microbiota, little is known about how the host regulates this critical diet-microbiota interaction. In our present study, we discovered that gut IgA targeted a protein complex involved in the utilization of an important dietary polysaccharide: fructan. While the presence of dietary fructans was previously thought to allow unrestricted growth of fructan-utilizing bacteria, our work shows that gut IgA, by targeting proteins responsible for fructan utilization, provides the host with tools that can restrict the microbial utilization of such polysaccharides, thereby controlling their growth.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi269-vi269
Author(s):  
Andrew Satterlee ◽  
Denise Dunn ◽  
Scott Floyd ◽  
Shawn Hingtgen

Abstract Genetically engineered neural stem cells (NSCs) are a promising therapy for the highly aggressive brain cancer glioblastoma (GBM), yet treatment durability remains a major challenge. We sought to define the events that contribute to dynamic adaption of GBM during NSC treatment and develop strategies to convert initial tumor kill into sustained GBM suppression. Using a unique hybrid tumor model treated with human skin-derived induced NSCs (iNSCs) releasing the pro-apoptotic agent TRAIL, we investigated how spatial distribution of tumor and iNSCs affects GBM adaption throughout recurrence. Serial bioluminescent imaging (BLI) was used to track tumor volumes in vivo, while a subset of mice were sacrificed 6, 13, and 20 days post-treatment to harvest brains and generate living ex vivo tissue slices. Live animal imaging showed iNSC-TRAIL treatment rapidly decreased tumor volumes when delivered into the primary tumor mass; however, minimal impact on tumor growth was observed when cells were delivered into distal regions of the brain. In contrast, high-resolution imaging of living brain sections showed extensive impacts of iNSC-TRAIL therapy that could not be visualized with BLI. The living slices showed iNSC-TRAIL treatment into the primary tumor decreased the solid, but not the invasive, tumor burden. Treatment into the lateral ventricles did impact tumor kill and was more effective at treating the invasive tumor burden and maintaining inhibition than treatment into the contralateral parenchyma. We next utilized the living tissue slices to explore the sensitivity of the recurrent tumors to TRAIL. When therapy was applied to slices harboring recurrent tumor, treatment again significantly reduced tumor volumes, suggesting that tumors had not acquired TRAIL resistance. These results informed an additional in vivo survival study and subsequent PCR analysis of untreated and recurrent tumors, and combine the fidelity of in vivo studies with the speed and spatial resolution of living brain slice technology.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lyess Allas ◽  
Sybille Brochard ◽  
Quitterie Rochoux ◽  
Jules Ribet ◽  
Cleo Dujarrier ◽  
...  

Abstract Histone methyltransferase EZH2 is upregulated during osteoarthritis (OA), which is the most widespread rheumatic disease worldwide, and a leading cause of disability. This study aimed to assess the impact of EZH2 inhibition on cartilage degradation, inflammation and functional disability. In vitro, gain and loss of EZH2 function were performed in human articular OA chondrocytes stimulated with IL-1β. In vivo, the effects of EZH2 inhibition were investigated on medial meniscectomy (MMX) OA mouse model. The tissue alterations were assayed by histology and the functional disabilities of the mice by actimetry and running wheel. In vitro, EZH2 overexpression exacerbated the action of IL-1β in chondrocytes increasing the expression of genes involved in inflammation, pain (NO, PGE2, IL6, NGF) and catabolism (MMPs), whereas EZH2 inhibition by a pharmacological inhibitor, EPZ-6438, reduced IL-1β effects. Ex vivo, EZH2 inhibition decreased IL-1β-induced degradation of cartilage. In vivo, intra-articular injections of the EZH2 inhibitor reduced cartilage degradation and improved motor functions of OA mice. This study demonstrates that the pharmacological inhibition of the histone methyl-transferase EZH2 slows the progression of osteoarthritis and improves motor functions in an experimental OA model, suggesting that EZH2 could be an effective target for the treatment of OA by reducing catabolism, inflammation and pain.


2019 ◽  
Vol 110 (7-8) ◽  
pp. 671-687 ◽  
Author(s):  
Eulalia A. Coutinho ◽  
Melanie Prescott ◽  
Sabine Hessler ◽  
Christopher J. Marshall ◽  
Allan E. Herbison ◽  
...  

Introduction: The central regulation of fertility is carefully coordinated with energy homeostasis, and infertility is frequently the outcome of energy imbalance. Neurons in the hypothalamus expressing neuropeptide Y and agouti-related peptide (NPY/AgRP neurons) are strongly implicated in linking metabolic cues with fertility regulation. Objective: We aimed here to determine the impact of selectively activating NPY/AgRP neurons, critical regulators of metabolism, on the activity of luteinizing hormone (LH) pulse generation. Methods: We employed a suite of in vivo optogenetic and chemogenetic approaches with serial measurements of LH to determine the impact of selectively activating NPY/AgRP neurons on dynamic LH secretion. In addition, electrophysiological studies in ex vivo brain slices were employed to ascertain the functional impact of activating NPY/AgRP neurons on gonadotropin-releasing hormone (GnRH) neurons. Results: Selective activation of NPY/AgRP neurons significantly decreased post-castration LH secretion. This was observed in males and females, as well as in prenatally androgenized females that recapitulate the persistently elevated LH pulse frequency characteristic of polycystic ovary syndrome (PCOS). Reduced LH pulse frequency was also observed when optogenetic stimulation was restricted to NPY/AgRP fiber projections surrounding GnRH neuron cell bodies in the rostral preoptic area. However, electrophysiological studies in ex vivo brain slices indicated these effects were likely to be indirect. Conclusions: These data demonstrate the ability of NPY/AgRP neuronal signaling to modulate and, specifically, reduce GnRH/LH pulse generation. The findings suggest a mechanism by which increased activity of this hunger circuit, in response to negative energy balance, mediates impaired fertility in otherwise reproductively fit states, and highlight a potential mechanism to slow LH pulsatility in female infertility disorders, such as PCOS, that are associated with hyperactive LH secretion.


Sign in / Sign up

Export Citation Format

Share Document