scholarly journals Liver-on-a-Chip‒Magnetic Nanoparticle Bound Synthetic Metalloporphyrin-Catalyzed Biomimetic Oxidation of a Drug in a Magnechip Reactor

Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 668 ◽  
Author(s):  
Decsi ◽  
Krammer ◽  
Hegedűs ◽  
Ender ◽  
Gyarmati ◽  
...  

Biomimetic oxidation of drugs catalyzed by metalloporphyrins can be a novel and promising way for the effective and sustainable synthesis of drug metabolites. The immobilization of 5,10,15,20-tetrakis(2,3,4,5,6-pentafluorophenyl)iron(II) porphyrin (FeTPFP) and 5,10,15,20-tetrakis-(4-sulfonatophenyl)iron(II) porphyrin (FeTSPP) via stable covalent or rapid ionic binding on aminopropyl-functionalized magnetic nanoparticles (MNPs-NH2) were developed. These immobilized catalysts could be efficiently applied for the synthesis of new pharmaceutically active derivatives and liver related phase I oxidative major metabolite of an antiarrhythmic drug, amiodarone integrated in a continuous-flow magnetic chip reactor (Magnechip).

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2329
Author(s):  
Diána Balogh-Weiser ◽  
Balázs Decsi ◽  
Réka Krammer ◽  
Gergő Dargó ◽  
Ferenc Ender ◽  
...  

The dual functionalization of magnetic nanoparticles with inert (methyl) and reactive (aminopropyl) groups enables efficient immobilization of synthetic metalloporphyrins (such as 5,10,15,20-tetrakis(2,3,4,5,6-pentafluorophenyl)iron(II) porphyrin and 5,10,15,20-tetrakis-(4-sulfonatophenyl)iron(II) porphyrin) via covalent or ionic interactions. The proportion of reactive function on the surface has significant effect on the biomimetic activity of metalloporphyrins. The optimized magnetic nanocatalyst containing porphyrin was successfully applied for biomimetic oxidation of antihypertensive drug Amlodipine in batch and continuous-flow reactors as well.


Biosensors ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 173
Author(s):  
Darío Sánchez Martín ◽  
Reinier Oropesa-Nuñez ◽  
Teresa Zardán Gómez de la Torre

This work explores several issues of importance for the development of a diagnostic method based on circle-to-circle amplification (C2CA) and oligonucleotide-functionalized magnetic nanoparticles. Firstly, the performance of the detection method was evaluated in terms of sensitivity and speed. Synthetic target sequences for Newcastle disease virus and Salmonella were used as model sequences. The sensitivity of the C2CA assay resulted in detection of 1 amol of starting DNA target with a total amplification time of 40 min for both target sequences. Secondly, the functionalization of the nanoparticles was evaluated in terms of robustness and stability. The functionalization was shown to be very robust, and the stability test showed that 92% of the oligos were still attached on the particle surface after three months of storage at 4 °C. Altogether, the results obtained in this study provide a strong foundation for the development of a quick and sensitive diagnostic assay.


2015 ◽  
Vol 21 (42) ◽  
pp. 6038-6054 ◽  
Author(s):  
Dragoș Gudovan ◽  
Paul Balaure ◽  
Dan Mihăiescu ◽  
Adrian Fudulu ◽  
Bogdan Purcăreanu ◽  
...  

2021 ◽  
Author(s):  
Emily Sheridan ◽  
Silvia Vercellino ◽  
Lorenzo Cursi ◽  
Laurent Adumeau ◽  
James A. Behan ◽  
...  

We describe how magnetic nanoparticles can be used to study intracellular nanoparticle trafficking, and how magnetic extraction may be integrated with downstream analyses to investigate nanoscale decision-making events.


2021 ◽  
Vol 22 (2) ◽  
pp. 654
Author(s):  
Ka Young Kim ◽  
Keun-A Chang

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra. Several treatments for PD have focused on the management of physical symptoms using dopaminergic agents. However, these treatments induce various adverse effects, including hallucinations and cognitive impairment, owing to non-targeted brain delivery, while alleviating motor symptoms. Furthermore, these therapies are not considered ultimate cures owing to limited brain self-repair and regeneration abilities. In the present study, we aimed to investigate the therapeutic potential of human adipose-derived stem cells (hASCs) using magnetic nanoparticles in a 6-hydroxydopamine (6-OHDA)-induced PD mouse model. We used the Maestro imaging system and magnetic resonance imaging (MRI) for in vivo tracking after transplantation of magnetic nanoparticle-loaded hASCs to the PD mouse model. The Maestro imaging system revealed strong hASCs signals in the brains of PD model mice. In particular, MRI revealed hASCs distribution in the substantia nigra of hASCs-injected PD mice. Behavioral evaluations, including apomorphine-induced rotation and rotarod performance, were significantly recovered in hASCs-injected 6-OHDA induced PD mice when compared with saline-treated counterparts. Herein, we investigated whether hASCs transplantation using magnetic nanoparticles recovered motor functions through targeted brain distribution in a 6-OHDA induced PD mice. These results indicate that magnetic nanoparticle-based hASCs transplantation could be a potential therapeutic strategy in PD.


Author(s):  
Izabell Crăciunescu ◽  
Petru Palade ◽  
Nicuşor Iacob ◽  
George Marian Ispas ◽  
Anda Elena Stanciu ◽  
...  

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1136 ◽  
Author(s):  
Qiang Li ◽  
Fei Pan ◽  
Wentao Li ◽  
Dongya Li ◽  
Haiming Xu ◽  
...  

In this study, a novel 2-vinylpyridine functionalized magnetic nanoparticle (Mag-PVP) was successfully prepared. The prepared Mag-PVP was characterized by transmission electronic microscopy (TEM), Fourier transform infrared spectrophotometry (FT-IR), vibrating sample magnetometry (VSM) and thermogravimetric analysis (TGA), and was used for the adsorption of bisphenol A (BPA) from aqueous solutions. Mag-PVP, which is composed of Fe3O4 nanoparticles and poly divinylbenzene-2-vinylpyridine (with a thickness of 10 nm), exhibited magnetic properties (Ms = 44.6 emu/g) and thermal stability. The maximum adsorption capacity (Qm) of Mag-PVP for BPA obtained from the Langmuir isotherm was 115.87 mg/g at 20 °C, which was more than that of Fe3O4 nanospheres. In the presence of NaCl, the improved adsorption capacity of Mag-PVP was probably attributed to the screening effect of Mag-PVP surface charge and salting-out effect. In the presence of CaCl2 and humic acid (HA), the adsorption capacity of BPA decreased due to competitive adsorption. The adsorption of BPA by Mag-PVP increased slightly with the increase in pH from 3.0 to 5.0 and obtained the largest adsorption amount at pH 5.0, which was probably attributed to hydrogen bonding interactions. Moreover, in actual water, Mag-PVP still showed excellent adsorption performance in removing BPA. The high adsorption capacity and excellent reusability performance in this work indicated that Mag-PVP was an effective adsorbent for removing BPA from aqueous solutions.


2021 ◽  
Vol 1092 (1) ◽  
pp. 012071
Author(s):  
Shah Samiur Rashid ◽  
Md. Belal Hossain Sikder ◽  
Mohd Hasbi Bin Ab. Rahim ◽  
Aizi Nor Mazila Binti Ramli ◽  
Rashidi Bin Roslan

Nanoscale ◽  
2021 ◽  
Author(s):  
Frederik Laust Durhuus ◽  
Lau Halkier Wandall ◽  
Mathias Hoeg Boisen ◽  
Mathias Kure ◽  
Marco Beleggia ◽  
...  

Magnetically guided self-assembly of nanoparticles is a promising bottom-up method to fabricate novel materials and superstructures, such as, for example, magnetic nanoparticle clusters for biomedical applications. The existence of assembled...


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jose E. Perez ◽  
Florian Fage ◽  
David Pereira ◽  
Ali Abou-Hassan ◽  
Sophie Asnacios ◽  
...  

Abstract Background The interactions between nanoparticles and the biological environment have long been studied, with toxicological assays being the most common experimental route. In parallel, recent growing evidence has brought into light the important role that cell mechanics play in numerous cell biological processes. However, despite the prevalence of nanotechnology applications in biology, and in particular the increased use of magnetic nanoparticles for cell therapy and imaging, the impact of nanoparticles on the cells’ mechanical properties remains poorly understood. Results Here, we used a parallel plate rheometer to measure the impact of magnetic nanoparticles on the viscoelastic modulus G*(f) of individual cells. We show how the active uptake of nanoparticles translates into cell stiffening in a short time scale (< 30 min), at the single cell level. The cell stiffening effect is however less marked at the cell population level, when the cells are pre-labeled under a longer incubation time (2 h) with nanoparticles. 24 h later, the stiffening effect is no more present. Imaging of the nanoparticle uptake reveals almost immediate (within minutes) nanoparticle aggregation at the cell membrane, triggering early endocytosis, whereas nanoparticles are almost all confined in late or lysosomal endosomes after 2 h of uptake. Remarkably, this correlates well with the imaging of the actin cytoskeleton, with actin bundling being highly prevalent at early time points into the exposure to the nanoparticles, an effect that renormalizes after longer periods. Conclusions Overall, this work evidences that magnetic nanoparticle internalization, coupled to cytoskeleton remodeling, contributes to a change in the cell mechanical properties within minutes of their initial contact, leading to an increase in cell rigidity. This effect appears to be transient, reduced after hours and disappearing 24 h after the internalization has taken place.


Sign in / Sign up

Export Citation Format

Share Document