scholarly journals AlGaN Nanowires for Ultraviolet Light-Emitting: Recent Progress, Challenges, and Prospects

Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 125 ◽  
Author(s):  
Songrui Zhao ◽  
Jiaying Lu ◽  
Xu Hai ◽  
Xue Yin

In this paper, we discuss the recent progress made in aluminum gallium nitride (AlGaN) nanowire ultraviolet (UV) light-emitting diodes (LEDs). The AlGaN nanowires used for such LED devices are mainly grown by molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD); and various foreign substrates/templates have been investigated. Devices on Si so far exhibit the best performance, whereas devices on metal and graphene have also been investigated to mitigate various limitations of Si substrate, e.g., the UV light absorption. Moreover, patterned growth techniques have also been developed to grow AlGaN nanowire UV LED structures, in order to address issues with the spontaneously formed nanowires. Furthermore, to reduce the quantum confined Stark effect (QCSE), nonpolar AlGaN nanowire UV LEDs exploiting the nonpolar nanowire sidewalls have been demonstrated. With these recent developments, the prospects, together with the general challenges of AlGaN nanowire UV LEDs, are discussed in the end.

2007 ◽  
Vol 17 (01) ◽  
pp. 81-84
Author(s):  
J. Senawiratne ◽  
M. Zhu ◽  
W. Zhao ◽  
Y. Xia ◽  
Y. Li ◽  
...  

Optical properties of green emission Ga 0.80 In 0.20 N/GaN multi-quantum well and light emitting diode have been investigated by using photoluminescence, cathodoluminescence, electroluminescence, and photoconductivity. The temperature dependent photoluminescence and cathodoluminescence studies show three emission bands including GaInN/GaN quantum well emission centered at 2.38 eV (~ 520 nm). The activation energy of the non-radiative recombination centers was found to be ~ 60 meV. The comparison of photoconductivity with luminescence spectroscopy revealed that optical properties of quantum well layers are strongly affected by the quantum-confined Stark effect.


2021 ◽  
Vol 21 (11) ◽  
pp. 5648-5652
Author(s):  
ll-Wook Cho ◽  
Bom Lee ◽  
Kwanjae Lee ◽  
Jin Soo Kim ◽  
Mee-Yi Ryu

The optical properties of InGaN/GaN green light-emitting diodes (LEDs) with an undoped graded short-period superlattice (GSL) and a Si-doped GSL (SiGSL) were investigated using photoluminescence (PL) and time-resolved PL spectroscopies. For comparison, an InGaN/GaN conventional LED (CLED) without the GSL structure was also grown. The SiGSL sample showed the strongest PL intensity and the largest PL peak energy because of band-filling effect and weakened quantum- confined stark effect (QCSE). PL decay time of SiGSL sample at 10 K was shorter than those of the CLED and GSL samples. This finding was attributed to the oscillator strength enhancement by the reduced QCSE due to the Coulomb screening by Si donors. In addition, the SiGSL sample exhibited the longest decay time at 300 K, which was ascribed to the reduced defect and dislocation density. These results indicate that insertion of the Si-doped GSL structure is an effective strategy for improving the optical properties in InGaN/GaN green LEDs.


2021 ◽  
Author(s):  
Tomohiro Tsurumoto ◽  
Yasuo Fujikawa ◽  
Daisaku Ohta ◽  
Atsushi Okazawa

SUMMARYIn plants, the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8) perceives UV-B and induces UV-B responses including synthesis of UV-B absorbing phenolic compounds such as anthocyanins. UVR8 absorbs a range of UV-B (260–335 nm). However, the responsiveness of plants to each UV-B wavelength has not been intensively studied so far. Here, we performed transcriptome and metabolome analyses of Arabidopsis using UV light emitting diodes (LEDs) with peak wavelengths of 280 and 310 nm to investigate the differences in the wavelength-specific UV-B responses. Irradiation with both UV-LEDs induced gene expression of the transcription factor ELONGATED HYPOCOTYL 5 (HY5), which has a central role in the UVR8 signaling pathway. However, the overall transcriptomic and metabolic responses to 280 and 310 nm UV-LED irradiation were different. Most of the known UV-B-responsive genes, such as salicylic acid, jasmonic acid, and defense-related genes, responded only to 280 nm UV-LED irradiation. Lipids, polyamines and organic acids were the metabolites most affected by 280 nm UV-LED irradiation, whereas the effect of 310 nm UV-LED irradiation on the metabolome was considerably less. Enzymatic genes involved in the phenylpropanoid pathway upstream in anthocyanin biosynthesis were up-regulated only by 280 nm UV-LED irradiation. On the other hand, no enzymatic genes downstream in anthocyanin biosynthesis were induced by the UV-LEDs, but rather, they were down-regulated by 310 nm UV-LED irradiation. These results revealed that the responsivenesses of Arabidopsis to 280 and 310 nm UV-B were significantly different, suggesting that UV-B signaling is mediated by more complex pathways than the current model.


2004 ◽  
Author(s):  
Alireza Yasan ◽  
Ryan McClintock ◽  
Kathryn A. Mayes ◽  
Derek J. Shiell ◽  
Shaban R. Darvish ◽  
...  

2015 ◽  
Vol 3 (42) ◽  
pp. 11151-11162 ◽  
Author(s):  
Hongpeng Zhou ◽  
Qingping Wang ◽  
Ye Jin

The white light emission of BaY2Si3O10:0.01 Bi3+, mEu3+ phosphor can be realized and utilizing the energy transfer under near UV light pumped. The energy transfer efficiency between Bi(i) and Bi(ii) change with the temperature increasing due to phonon-assisted process. It is rare in the experiment on directly proof with the phonon-assisted energy transfer.


MRS Bulletin ◽  
2009 ◽  
Vol 34 (5) ◽  
pp. 324-327 ◽  
Author(s):  
Hiroaki Ohta ◽  
Kuniyoshi Okamoto

AbstractTo achieve 520–532 nm green laser diodes (LDs), nonpolar and semipolar nitrides have attracted much attention because their usage leads to the elimination of the quantum-confined Stark effect and higher optical gains in this wavelength region. Since the breakthrough in the homoepitaxial growth technology for them, many nonpolar m -plane devices such as mW-class blue light-emitting diodes, violet 405 nm LDs, blue 460 nm LDs, and blue-green LDs beyond 490 nm have been announced. Advantages such as small blueshift and high slope efficiency (high output power to injected current ratio) have been confirmed for the first time in m -plane LDs beyond the blue region. On the other hand, the semipolar plane is also a candidate for green LDs. The pulsed operation of semipolar (1011) and (1122) violet LDs and lasing for a (1122) LD at 514 nm by optical pumping also have been reported. Such rapid progress in this research field will be reviewed.


Sign in / Sign up

Export Citation Format

Share Document