scholarly journals An Electric Field Microsensor with Mutual Shielding Electrodes

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 360
Author(s):  
Hucheng Lei ◽  
Shanhong Xia ◽  
Zhaozhi Chu ◽  
Biyun Ling ◽  
Chunrong Peng ◽  
...  

This paper proposes an electric field microsensor (EFM) with mutual shielding electrodes. Based on the charge-induction principle, the EFM consists of fixed electrodes and piezoelectric-driving vertically-movable electrodes. All the fixed electrodes and movable electrodes work as both sensing electrodes and shielding electrodes. In other words, all the fixed and movable electrodes are sensing electrodes, and they are mutually shielding electrodes simultaneously. The movable electrodes are driven to periodically modulate the electric field distribution at themselves and the fixed electrodes, and the induced currents from both movable and fixed electrodes are generated simultaneously. The electrode structure adopts an interdigital structure, and the EFM has been simulated by finite element methods. Simulation results show that, since the sensing area of this EFM is doubled, the variation of induced charge is twice, and therefore the output signal of the sensor is increased. The piezoelectric material, lead zirconate titanate (PZT), is prepared by the sol–gel method, and the microsensor chip is fabricated.

2019 ◽  
Author(s):  
Chem Int

Model was developed for the prediction of polarization characteristics in a dielectric material exhibiting piezoelectricity and electrostriction based on mathematical equations and MATLAB computer simulation software. The model was developed based on equations of polarization and piezoelectric constitutive law and the functional coefficient of Lead Zirconate Titanate (PZT) crystal material used was 2.3×10-6 m (thickness), the model further allows the input of basic material and calculation of parameters of applied voltage levels, applied stress, pressure, dielectric material properties and so on, to generate the polarization curve, strain curve and the expected deformation change in the material length charts. The mathematical model revealed that an application of 5 volts across the terminals of a 2.3×10-6 m thick dielectric material (PZT) predicted a 1.95×10-9 m change in length of the material, which indicates piezoelectric properties. Both polarization and electric field curve as well as strain and voltage curve were also generated and the result revealed a linear proportionality of the compared parameters, indicating a resultant increase in the electric field yields higher polarization of the dielectric materials atmosphere.


2002 ◽  
Vol 748 ◽  
Author(s):  
C. L. Zhao ◽  
Z. H. Wang ◽  
W. Zhu ◽  
O. K. Tan ◽  
H. H. Hng

ABSTRACTLead zirconate titanate (PZT) films are promising for acoustic micro-devices applications because of their extremely high electromechanical coupling coefficients and excellent piezoelectric response. Thicker PZT films are crucial for these acoustic applications. A hybrid sol-gel technology has been developed as a new approach to realize simple and cost-effective fabrication of high quality PZT thick films. In this paper, PZT53/47 thick films with a thickness of 5–50 μm are successfully deposited on Pt-coated silicon wafer by using the hybrid sol-gel technology. The obtained PZT thick films are dense, crack-free, and have a nano-sized microstructure. The processing parameters of this technology have been evaluated. The microstructure of the film has been observed using field-emission scanning electron microscopy and the crystallization process has been monitored by the X-ray diffraction. The thick films thus made are good candidates for fabrication of piezoelectric diaphragm which will be an essential element of microspeaker and microphone arrays.


2003 ◽  
Vol 15 (5) ◽  
pp. 1147-1155 ◽  
Author(s):  
A. Wu ◽  
P. M. Vilarinho ◽  
I. Reaney ◽  
I. M. Miranda Salvado

1994 ◽  
Vol 17 (6) ◽  
pp. 1005-1014 ◽  
Author(s):  
S B Majumder ◽  
V N Kulkarni ◽  
Y N Mohapatra ◽  
D C Agrawal

2012 ◽  
Vol 112 (3) ◽  
pp. 034103 ◽  
Author(s):  
Julia Glaum ◽  
Yuri A. Genenko ◽  
Hans Kungl ◽  
Ljubomira Ana Schmitt ◽  
Torsten Granzow

2016 ◽  
Vol 06 (03) ◽  
pp. 1650019 ◽  
Author(s):  
V. M. Ishchuk ◽  
D. V. Kuzenko

The paper presents results of experimental study of the dielectric constant relaxation during aging process in Pb(Zr,Ti)O3based solid solutions (PZT) after action of external DC electric field. The said process is a long-term one and is described by the logarithmic function of time. Reversible and nonreversible relaxation process takes place depending on the field intensity. The relaxation rate depends on the field strength also, and the said dependence has nonlinear and nonmonotonic form, if external field leads to domain disordering. The oxygen vacancies-based model for description of the long-term relaxation processes is suggested. The model takes into account the oxygen vacancies on the sample's surface ends, their conversion into [Formula: see text]- and [Formula: see text]-centers under external effects and subsequent relaxation of these centers into the simple oxygen vacancies after the action termination. [Formula: see text]-centers formation leads to the violation of the original sample's electroneutrality, and generate intrinsic DC electric field into the sample. Relaxation of [Formula: see text]-centers is accompanied by the reduction of the electric field, induced by them, and relaxation of the dielectric constant, as consequent effect.


2001 ◽  
Vol 666 ◽  
Author(s):  
B.W. Olson ◽  
L.M. Randall ◽  
C.D. Richards ◽  
R.F. Richards ◽  
D.F. Bahr

ABSTRACTPiezoelectric oxide films, such as lead zirconate titanate (PZT), are now being integrated into MEMS applications. Many PZT derived systems are deposited using a sol-gel process, which can be used in a microelectronics processing route using spin coating as the deposition method. An application of interest for PZT films is in power generation, where a flexing membrane is used to transform mechanical to electrical energy. The current study was undertaken to identify the relationships between the processing, microstructure, and mechanical reliability of these films. Films were deposited onto both monolithic and bulk micromachined platinized silicon wafers using standard sol-gel chemistries, with roughness and grain size tracked using electron and scanning probe microscopy. Mechanical properties were evaluated in a dynamic bulge testing apparatus. Grain size variations in the Pt film between 35 and 125 nm are shown to have little effect on grain size of the subsequent PZT film and the adhesion of the PZT to the Pt film. Only the Pt film with 125 nm grains was shown to undergo any significant interfacial fracture. Fatigue tests suggest film lifetime is primarily limited by the number of pre- existing flaws in the film from processing. Reducing the microcrack density has been shown to produce films and devices that fail at strains of 1.4% and have mechanical fatigue lifetimes in excess of 100 million cycles at strains simulating the operating conditions.


Sign in / Sign up

Export Citation Format

Share Document