scholarly journals CPW-Fed Flexible Ultra-Wideband Antenna for IoT Applications

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 453
Author(s):  
Sharadindu Gopal Kirtania ◽  
Bachir Adham Younes ◽  
Abdul Rakib Hossain ◽  
Tutku Karacolak ◽  
Praveen Kumar Sekhar

In this article, an inkjet-printed circular-shaped monopole ultra-wideband (UWB) antenna with an inside-cut feed structure was implemented on a flexible polyethylene terephthalate (PET) substrate. The coplanar waveguide (CPW)-fed antenna was designed using ANSYS high-frequency structural simulator (HFSS), which operates at 3.04–10.70 GHz and 15.18–18 GHz (upper Ku band) with a return loss < −10 dB and a VSWR < 2. The antenna, with the dimensions of 47 mm × 25 mm × 0.135 mm, exhibited omnidirectional radiation characteristics over the entire impedance bandwidth, with an average peak gain of 3.94 dBi. The simulated antenna structure was in good agreement with the experiment’s measured results under flat and bending conditions, making it conducive for flexible and wearable Internet of things (IoT) applications.

Frequenz ◽  
2016 ◽  
Vol 70 (11-12) ◽  
Author(s):  
Sarthak Singhal ◽  
Amit Kumar Singh

AbstractA CPW-fed 8-shaped monopole antenna for ultra wideband applications is presented. It consists of a 8-shaped monopole and two quarter elliptical coplanar waveguide ground planes. An impedance bandwidth from 5.4 GHz to 23.83 GHz is achieved. The radiation patterns are observed to be omnidirectional and bidirectional in E-and H-plane respectively at lower resonances. At higher frequencies, the radiation patterns are found to be nearly omnidirectional in both planes. The group delay variation is also observed to be constant in the operating frequency range. A good agreement is found between the simulation and experimental results. The designed antenna structure has miniaturized dimensions and wider bandwidth as compared to other already reported monopole structures.


2020 ◽  
Vol 8 (5) ◽  
pp. 3988-3990

In this paper, A coplanar waveguide (CPW) ultra-wideband(UWB) antenna is designed, analyzed and simulated by computer simulation technology(CST). The proposed antenna is fabricated on FR-4 dielectric substrate. A microstrip feed line is used to excite the antenna.The ground plane is slotted to improve the impedance bandwidth (BW). Here, a rectangular patch is used as radiator and two corners out of four are truncated to improve impedance matching and UWB characterization.This antenna satisfies UWB characteristics like VSWR<2, Return loss(S11)<-10 dB,Gain<5dB and the antenna is operating within the frequency range of 1.59 to 11.87 GHz range which covers whole ultra wideband i.e. 3.1 to 10.6 GHz range.


2015 ◽  
Vol 9 (2) ◽  
pp. 373-379 ◽  
Author(s):  
Sarthak Singhal ◽  
Ankit Pandey ◽  
Amit Kumar Singh

A coplanar waveguide (CPW)-fed circular-shaped fractal antenna with third iterative orthogonal elliptical slot for ultra-wideband applications is presented. The bandwidth is enhanced by using successive iterations of radiating patch, CPW feedline, and tapered ground plane. An impedance bandwidth of 2.9–20.6 GHz is achieved. The designed antenna has omnidirectional radiation patterns along with average peak realized gain of 3.5 dB over the entire frequency range of operation. A good agreement is observed between the simulated and experimental results. This antenna structure has the advantages of miniaturized size and wide bandwidth in comparison to previously reported fractal structures.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Amar Sharma ◽  
Puneet Khanna ◽  
Kshitij Shinghal ◽  
Arun Kumar

A CPW-fed defected substrate microstrip antenna is proposed. The proposed antenna shows wideband applications by choosing suitable defected crown shaped substrate. Defected substrate also reduces the size of an antenna. The radiating patch of proposed antenna is taken in the form of extended U-shape. The space around the radiator is utilized by extending the ground plane on both sides of radiator. Simulation of proposed antenna is done on Ansoft’s High Frequency Structure Simulator (HFSS v. 14). Measured results are in good agreement with simulated results. The prototype is taken with dimensions 36 mm × 42 mm × 1.6 mm that achieves good return loss, constant group delay, and good radiation characteristics within the entire operating band from 4.5 to 13.5 GHz (9.0 GHz) with 100% impedance bandwidth at 9.0 GHz centre frequency. Thus, the proposed antenna is applicable for C and X band applications.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 529 ◽  
Author(s):  
Ch Ramakrishna ◽  
G A.E.Satish Kumar ◽  
P Chandra Sekhar Reddy

This paper presents a band notched WLAN self complementaryultra wide band antenna for wireless applications. The proposed antenna encounters a return loss (RL) less than -10dB for entire ultra wideband frequency range except band notched frequency. This paper proposes a hexagon shape patch, edge feeding, self complementary technique and defective ground structure. The antenna has an overall dimensionof 28.3mm × 40mm × 2mm, builton  substrate FR4 with a relative dielectric permittivity 4.4. And framework is simulated finite element method with help of high frequency structured simulator HFSSv17.2.the proposed antenna achieves a impedance bandwidth of 8.6GHz,  band rejected WLAN frequency range 5.6-6.5 GHz with  vswr is less than 2.


2019 ◽  
Vol 9 (15) ◽  
pp. 3157 ◽  
Author(s):  
O ◽  
Jin ◽  
Choi

In this paper, we propose a compact four-port coplanar antenna for cognitive radio applications. The proposed antenna consists of a coplanar waveguide (CPW)-fed ultra-wideband (UWB) antenna and three inner rectangular loop antennas. The dimensions of the proposed antenna are 42 mm × 50 mm × 0.8 mm. The UWB antenna is used for spectrum sensing and fully covers the UWB spectrum of 3.1–10.6 GHz. The three loop antennas cover the UWB frequency band partially for communication purposes. The first loop antenna for the low frequency range operates from 2.96 GHz to 5.38 GHz. The second loop antenna is in charge of the mid band from 5.31 GHz to 8.62 GHz. The third antenna operates from 8.48 GHz to 11.02 GHz, which is the high-frequency range. A high isolation level (greater than 17.3 dB) is realized among the UWB antenna and three loop antennas without applying any additional decoupling structures. The realized gains of the UWB antenna and three loop antennas are greater than 2.7 dBi and 1.38 dBi, respectively.


2018 ◽  
Vol 10 (10) ◽  
pp. 1107-1112 ◽  
Author(s):  
Song Guo ◽  
Kaijun Song ◽  
Yedi Zhou ◽  
Yong Fan

AbstractThe ultra-wideband bandpass-response power divider with high-frequency selectivity is presented in this paper. This power divider consists of an impedance transformer, a filter network, and two isolation resistors. In order to realize the ultra-wideband filtering performance, parallel coupling lines and parallel open-circuit branches are applied to the second impedance converter. A resistor is added to the ends of the coupling lines to achieve good isolation and output return loss. The equivalent-circuit method is employed to analyze the presented power divider. The power divider, working at 3.45–8.29 GHz, is designed and fabricated. Two transmission zeros are generated at 2.8 and 9 GHz, respectively, and the out-of-band suppression is >13 dB. The measured results are in good agreement with the simulation ones.


2015 ◽  
Vol 9 (1) ◽  
pp. 151-162 ◽  
Author(s):  
Raj Kumar ◽  
Neha Pazare

An ultra-wideband (UWB) slot antenna for diversity applications is introduced. The overall structure of the antenna consists of two similar coplanar waveguide (CPW)-fed stepped rectangular slots placed in an orthogonal position. The slots are asymmetric with respect to their placement in the ground plane. The CPW feeds are double stepped and terminated on hexagonal patches for better impedance matching. A wide impedance bandwidth (measured) from 3 to 12 GHz with an isolation better than 15 dB is obtained with this antenna. To improve the isolation, the design is modified and an I-shaped slot strip is introduced between the two slot antennas. With this, the isolation is brought about 25 dB of most of the band, while the impedance bandwidth remains the same (2.8–12 GHz for port 1, measured and 2.9–12 GHz for port 2, measured). The far-field radiation patterns are also measured and a peak gain of about 5 dBi is obtained. Finally, the diversity parameters such as envelope correlation coefficient and capacity loss are calculated and found to have low values. The antenna is expected to be useful for UWB diversity applications with good isolation.


Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 83
Author(s):  
Mohammad Mahdi Honari ◽  
Mohammad Saeid Ghaffarian ◽  
Rashid Mirzavand

In this paper, a miniaturized ultra-wideband antipodal tapered slot antenna with exponential strip arms is presented. Two exponential arms with designed equations are optimized to reduce the lower edge cut-off frequency of the impedance bandwidth from 1480 MHz to 720 MHz, resulting in antenna miniaturization by 51%. This approach also improves antenna bandwidth without compromising the radiation characteristics. The dimension of the proposed antenna structure including the feeding line and transition is 158 × 125 × 1 mm3. The results show that a peak gain more than 1 dBi is achieved all over the impedance bandwidth (0.72–17 GHz), which is an improvement to what have been reported for antipodal tapered slot and Vivaldi antennas with similar size.


2018 ◽  
Vol 7 (5) ◽  
pp. 20-25
Author(s):  
M. Debab ◽  
Z. Mahdjoub

In this article, a novel design of ultra wideband monopole antenna with dual notched bands performance is proposed. The size of the UWB antenna is minimized to 20 -17.6mm2 , printed on FR4 substrate 1.5 mm thickness and loss tangent tan𝛿 =0.02, and is fed by coplanar waveguide. The operation bandwidth of the designed antenna is from 3.1 GHz to more than 10 GHz. Band notches characteristics of antenna to reject the frequency band, WIMAX Band and WLAN Band, is realized by cutting three quarter wavelength slots in the radiating patch. A quarter wavelength slot in the radiator of the antenna is used to create a frequency band notch at the WIMAX frequency band. However, the WLAN frequency band is notched using two symmetrical quarter wavelength slots. The proposed antenna is simulated using HFSS and CST high frequency simulators. These results are compared with measured results by using network analyzer.


Sign in / Sign up

Export Citation Format

Share Document