scholarly journals Coupling Analysis of Flexoelectric Effect on Functionally Graded Piezoelectric Cantilever Nanobeams

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 595
Author(s):  
Yuhang Chen ◽  
Maomao Zhang ◽  
Yaxuan Su ◽  
Zhidong Zhou

The flexoelectric effect has a significant influence on the electro-mechanical coupling of micro-nano devices. This paper studies the mechanical and electrical properties of functionally graded flexo-piezoelectric beams under different electrical boundary conditions. The generalized variational principle and Euler–Bernoulli beam theory are employed to deduce the governing equations and corresponding electro-mechanical boundary conditions of the beam model. The deflection and induced electric potential are given as analytical expressions for the functionally graded cantilever beam. The numerical results show that the flexoelectric effect, piezoelectric effect, and gradient distribution have considerable influences on the electro-mechanical performance of the functionally graded beams. Moreover, the nonuniform piezoelectricity and polarization direction will play a leading role in the induced electric potential at a large scale. The flexoelectric effect will dominate the induced electric potential as the beam thickness decreases. This work provides helpful guidance to resolve the application of flexoelectric and piezoelectric effects in functionally graded materials, especially on micro-nano devices.

2020 ◽  
pp. 107754632095222
Author(s):  
Rasoul Bagheri ◽  
Yaghoub Tadi Beni

In this study, size-dependent nonlinear forced vibration of viscoelastic/flexoelectric nanobeams has been investigated. By calculating enthalpy and kinetic energy and using Hamilton’s principle, the coupled governing equations of viscoelastic/flexoelectric nanobeams are derived along with dependent electrical and mechanical boundary conditions. Furthermore, to take the effects of the small scale into account, the nonclassical theory of continuous medium has been used and the Euler–Bernoulli beam model has been adopted to model the nanobeams. Finally, the governing equations are solved using numerical methods for distributed loaded and clamped–clamped boundary conditions. By comparing the results, it is determined that the parameters of the size effect and the viscoelastic medium effect can increase the vibrational frequency of the nanobeams. Also, the results show that the frequency of nanobeams outside of the viscoelastic medium strongly depends on the size-dependent parameters, and the increase in the length and thickness of the nanobeam decreases the frequency. The results also show that with the increasing flexoelectric effect, the amplitude of the nonlinear oscillation increases.


2013 ◽  
Vol 30 (2) ◽  
pp. 161-172 ◽  
Author(s):  
R. Ansari ◽  
M. Faghih Shojaei ◽  
V. Mohammadi ◽  
R. Gholami ◽  
H. Rouhi

ABSTRACTBased on the Timoshenko beam model, the nonlinear vibration of microbeams made of functionally graded (FG) materials is investigated under different boundary conditions. To consider small scale effects, the model is developed based on the most general form of strain gradient elasticity. The nonlinear governing equations and boundary conditions are derived via Hamilton's principle and then discretized using the generalized differential quadrature technique. A pseudo-Galerkin approach is used to reduce the set of discretized governing equations into a time-varying set of ordinary differential equations of Duffing-type. The harmonic balance method in conjunction with the Newton-Raphson method is also applied so as to solve the problem in time domain. The effects of boundary conditions, length scale parameters, material gradient index and geometrical parameters are studied. It is found that the importance of the small length scale is affected by the type of boundary conditions and vibration mode. Also, it is revealed that the classical theory tends to underestimate the vibration amplitude and linear frequency of FG microbeams.


2020 ◽  
Vol 12 (08) ◽  
pp. 2050093
Author(s):  
Mehdi Mousavi Khoram ◽  
Mohammad Hosseini ◽  
Amin Hadi ◽  
Mohammad Shishehsaz

Bending of bidirectional functionally graded nanobeams under mechanical loads and magnetic force was investigated. The nanobeam is assumed to be resting on the Winkler–Pasternak foundation. Eringen’s nonlocal elasticity theory and Timoshenko beam model are utilized to describe the mechanical behavior of the nanobeam. Material properties of the functionally graded beam are assumed to vary in the thickness and length of the nanobeam. Hamilton’s principle is employed to derive the governing equation and related boundary conditions. These equations are solved using the generalized differential quadrature method. The obtained results are compared with the results presented in other studies, to ensure the validity and versatility of this method. This comparison shows a good agreement between the results. Results are presented and discussed for different values of functionally graded materials indices, different aspect ratios, and different boundary conditions. The effect of the magnetic field and elastic foundation on buckling load has also been studied. The difference in nanobeam behavior for different values of the size-effect parameter is clearly shown.


2019 ◽  
Vol 25 (19-20) ◽  
pp. 2641-2655 ◽  
Author(s):  
Ehsan Taati ◽  
Famida Fallah

Based on the Euler–Bernoulli beam model and the modified strain gradient theory, the size-dependent forced vibration of sandwich microbeams with a functionally graded (FG) core is presented. The equation of motion and the corresponding classical and nonclassical boundary conditions are derived using the Hamilton’s principle. An exact solution of the governing equation is developed for sandwich beams with various boundary conditions and subjected to an arbitrarily distributed harmonic transverse load. Finally, parametric studies are presented to investigate the effects of geometric ratios, length scale parameters, power index, boundary conditions, layup, and thickness of the FG layer on the frequency response of clamped and simply supported microbeams. Numerical results show that in the case of clamped microbeams, the essential and natural size-dependent boundary conditions have a significant effect on the resonance frequency and transverse deflection of microbeams. Also, it is seen that an optimal layup (without change in total volume of each material) can significantly improve the frequency characteristics of sandwich microbeams.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 923
Author(s):  
Kun Huang ◽  
Ji Yao

The potential application field of single-walled carbon nanotubes (SWCNTs) is immense, due to their remarkable mechanical and electrical properties. However, their mechanical properties under combined physical fields have not attracted researchers’ attention. For the first time, the present paper proposes beam theory to model SWCNTs’ mechanical properties under combined temperature and electrostatic fields. Unlike the classical Bernoulli–Euler beam model, this new model has independent extensional stiffness and bending stiffness. Static bending, buckling, and nonlinear vibrations are investigated through the classical beam model and the new model. The results show that the classical beam model significantly underestimates the influence of temperature and electrostatic fields on the mechanical properties of SWCNTs because the model overestimates the bending stiffness. The results also suggest that it may be necessary to re-examine the accuracy of the classical beam model of SWCNTs.


Author(s):  
Benjamin Wassermann ◽  
Nina Korshunova ◽  
Stefan Kollmannsberger ◽  
Ernst Rank ◽  
Gershon Elber

AbstractThis paper proposes an extension of the finite cell method (FCM) to V-rep models, a novel geometric framework for volumetric representations. This combination of an embedded domain approach (FCM) and a new modeling framework (V-rep) forms the basis for an efficient and accurate simulation of mechanical artifacts, which are not only characterized by complex shapes but also by their non-standard interior structure. These types of objects gain more and more interest in the context of the new design opportunities opened by additive manufacturing, in particular when graded or micro-structured material is applied. Two different types of functionally graded materials (FGM) are considered: The first one, multi-material FGM is described using the inherent property of V-rep models to assign different properties throughout the interior of a domain. The second, single-material FGM—which is heterogeneously micro-structured—characterizes the effective material behavior of representative volume elements by homogenization and performs large-scale simulations using the embedded domain approach.


Author(s):  
Amin Ghorbani Shenas ◽  
Parviz Malekzadeh ◽  
Sima Ziaee

This work presents an investigation on the free vibration behavior of rotating pre-twisted functionally graded graphene platelets reinforced composite (FG-GPLRC) laminated blades/beams with an attached point mass. The considered beams are constituted of [Formula: see text] layers which are bonded perfectly and made of a mixture of isotropic polymer matrix and graphene platelets (GPLs). The weight fraction of GPLs changes in a layer-wise manner. The effective material properties of FG-GPLRC layers are computed by using the modified Halpin-Tsai model together with rule of mixture. The free vibration eigenvalue equations are developed based on the Reddy’s third-order shear deformation theory (TSDT) using the Chebyshev–Ritz method under different boundary conditions. After validating the approach, the influences of the GPLs distribution pattern, GPLs weight fraction, angular velocity, the variation of the angle of twist along the beam axis, the ratio of attached mass to the beam mass, boundary conditions, position of attached mass, and geometry on the vibration behavior are investigated. The findings demonstrate that the natural frequencies of the rotating pre-twisted FG-GPLRC laminated beams significantly increases by adding a very small amount of GPLs into polymer matrix. It is shown that placing more GPLs near the top and bottom surfaces of the pre-twisted beam is an effective way to strengthen the pre-twisted beam stiffness and increase the natural frequencies.


Sign in / Sign up

Export Citation Format

Share Document