On the size-dependent nonlinear dynamics of viscoelastic/flexoelectric nanobeams

2020 ◽  
pp. 107754632095222
Author(s):  
Rasoul Bagheri ◽  
Yaghoub Tadi Beni

In this study, size-dependent nonlinear forced vibration of viscoelastic/flexoelectric nanobeams has been investigated. By calculating enthalpy and kinetic energy and using Hamilton’s principle, the coupled governing equations of viscoelastic/flexoelectric nanobeams are derived along with dependent electrical and mechanical boundary conditions. Furthermore, to take the effects of the small scale into account, the nonclassical theory of continuous medium has been used and the Euler–Bernoulli beam model has been adopted to model the nanobeams. Finally, the governing equations are solved using numerical methods for distributed loaded and clamped–clamped boundary conditions. By comparing the results, it is determined that the parameters of the size effect and the viscoelastic medium effect can increase the vibrational frequency of the nanobeams. Also, the results show that the frequency of nanobeams outside of the viscoelastic medium strongly depends on the size-dependent parameters, and the increase in the length and thickness of the nanobeam decreases the frequency. The results also show that with the increasing flexoelectric effect, the amplitude of the nonlinear oscillation increases.

2017 ◽  
Vol 09 (04) ◽  
pp. 1750056 ◽  
Author(s):  
Xining Wang ◽  
Rui Zhang ◽  
Liying Jiang

Flexoelectricity, a spontaneous polarization in linear response to strain gradients or non-uniform deformation, is believed to contribute to the size-dependent electromechanical coupling of piezoelectric materials at the nanoscale. In the current work, the flexoelectric effect upon the static bending behaviors of a cantilevered piezoelectric nanoplate (PNP) is studied. Based on the Kirchhoff plate model and the extended linear piezoelectric theory, the non-conventional governing equations and the boundary conditions of the PNP under both mechanical and electrical loads are derived with the incorporation of the flexoelectric effect. Finite difference method (FDM) is performed to get the numerical solution for the electroelastic fields of the plate. Simulation results show that the flexoelectric effect is more prominent for the thinner plates with smaller thickness. It is also found that the flexoelectric effect upon the electroelastic responses of the clamped PNP is also sensitive to some other factors, including the boundary conditions, the plate geometric ratio, and the applied mechanical and electrical loads. This work aims to provide an increased understanding of the size-dependent electromechanical coupling properties of a piezoelectric plate structure.


2013 ◽  
Vol 30 (2) ◽  
pp. 161-172 ◽  
Author(s):  
R. Ansari ◽  
M. Faghih Shojaei ◽  
V. Mohammadi ◽  
R. Gholami ◽  
H. Rouhi

ABSTRACTBased on the Timoshenko beam model, the nonlinear vibration of microbeams made of functionally graded (FG) materials is investigated under different boundary conditions. To consider small scale effects, the model is developed based on the most general form of strain gradient elasticity. The nonlinear governing equations and boundary conditions are derived via Hamilton's principle and then discretized using the generalized differential quadrature technique. A pseudo-Galerkin approach is used to reduce the set of discretized governing equations into a time-varying set of ordinary differential equations of Duffing-type. The harmonic balance method in conjunction with the Newton-Raphson method is also applied so as to solve the problem in time domain. The effects of boundary conditions, length scale parameters, material gradient index and geometrical parameters are studied. It is found that the importance of the small length scale is affected by the type of boundary conditions and vibration mode. Also, it is revealed that the classical theory tends to underestimate the vibration amplitude and linear frequency of FG microbeams.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
R. Ansari ◽  
M. A. Ashrafi ◽  
S. Hosseinzadeh

The vibration behavior of piezoelectric microbeams is studied on the basis of the modified couple stress theory. The governing equations of motion and boundary conditions for the Euler-Bernoulli and Timoshenko beam models are derived using Hamilton’s principle. By the exact solution of the governing equations, an expression for natural frequencies of microbeams with simply supported boundary conditions is obtained. Numerical results for both beam models are presented and the effects of piezoelectricity and length scale parameter are illustrated. It is found that the influences of piezoelectricity and size effects are more prominent when the length of microbeams decreases. A comparison between two beam models also reveals that the Euler-Bernoulli beam model tends to overestimate the natural frequencies of microbeams as compared to its Timoshenko counterpart.


Author(s):  
Anooshiravan Farshidianfar ◽  
Ali A. Ghassabi ◽  
Mohammad H. Farshidianfar ◽  
Mohammad Hoseinzadeh

The free vibration and instability of fluid-conveying multi-wall carbon nanotubes (MWCNTs) are studied based on an Euler-Bernoulli beam model. A theory based on the transfer matrix method (TMM) is presented. The validity of the theory was confirmed for MWCNTs with different boundary conditions. The effects of the fluid flow velocity were studied on MWCNTs with simply-supported and clamped boundary conditions. Furthermore, the effects of the CNTs’ thickness, radius and length were investigated on resonance frequencies. The CNT was found to posses certain frequency behaviors at different geometries. The effect of the damping corriolis term was studied in the equation of motion. Finally, a useful simplification is introduced in the equation of motion.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401882332
Author(s):  
Yang Yang ◽  
Wuhuai Yan ◽  
Jinrui Wang

In this article, Timoshenko’s beam model is established to investigate the wave propagation behaviors for a fluid-conveying carbon nanotube when employing the nonlocal stress–strain gradient coupled theory and nonlocal fluid theory. The governing equations of motion for the carbon nanotube are derived. The small-scale influences induced by the nanotube are simulated by nonlocal and strain gradient effects, and the scale effect induced by fluid flow is first investigated applying nonlocal fluid theory. Numerical results obtained by solving the governing equations indicate that the nonlocal effect induced by the nanotube leads to wave damping and a decrease in stiffness, while the strain gradient effect contributes to wave promotion and an enhancement in stiffness. The scale effect caused by the inner fluid only leads to a decay for a high-mode wave since there is no influence from fluid flow on the low-mode wave. The numerical solution is validated by comparing with Monte Carlo simulation and interval analysis method.


Author(s):  
M Faraji Oskouie ◽  
R Ansari ◽  
H Rouhi

On the basis of fractional viscoelasticity, the size-dependent free-vibration response of viscoelastic carbon nanotubes conveying fluid and resting on viscoelastic foundation is studied in this article. To this end, a nonlocal Timoshenko beam model is developed in the context of fractional calculus. Hamilton’s principle is applied in order to obtain the fractional governing equations including nanoscale effects. The Kelvin–Voigt viscoelastic model is also used for the constitutive equations. The free-vibration problem is solved using two methods. In the first method, which is limited to the simply supported boundary conditions, the Galerkin technique is employed for discretizing the spatial variables and reducing the governing equations to a set of ordinary differential equations on the time domain. Then, the Duffing-type time-dependent equations including fractional derivatives are solved via fractional integrator transfer functions. In the second method, which can be utilized for carbon nanotubes with different types of boundary conditions, the generalized differential quadrature technique is used for discretizing the governing equations on spatial grids, whereas the finite difference technique is used on the time domain. In the results, the influences of nonlocality, geometrical parameters, fractional derivative orders, viscoelastic foundation, and fluid flow velocity on the time responses of carbon nanotubes are analyzed.


2018 ◽  
Vol 25 (4) ◽  
pp. 820-833 ◽  
Author(s):  
Mustafa Arda ◽  
Metin Aydogdu

This article is concerned with the dynamic stability problem of a nanobeam under a time-varying axial loading. The nonlocal Euler–Bernoulli beam model has been used for the continuum modeling of the nanobeam structure. This problem leads to a time-dependent Mathieu-Hill equation and has been solved by using the Lindstedt–Poincaré perturbation expansion method. The effect of a small-scale parameter on the dynamic displacement and critical dynamic buckling load of nanobeams has been investigated. Stability regions have been obtained from the local and nonlocal elasticity theories. The effect of the longitudinal vibration of nanobeams on instability regions has been included in the present analysis. Amplitudes of an arbitrary point of a nanobeam due to harmonic loads have been determined. Nonlocal and longitudinal vibration effects reduce the area of the instability region and increase amplitudes.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 595
Author(s):  
Yuhang Chen ◽  
Maomao Zhang ◽  
Yaxuan Su ◽  
Zhidong Zhou

The flexoelectric effect has a significant influence on the electro-mechanical coupling of micro-nano devices. This paper studies the mechanical and electrical properties of functionally graded flexo-piezoelectric beams under different electrical boundary conditions. The generalized variational principle and Euler–Bernoulli beam theory are employed to deduce the governing equations and corresponding electro-mechanical boundary conditions of the beam model. The deflection and induced electric potential are given as analytical expressions for the functionally graded cantilever beam. The numerical results show that the flexoelectric effect, piezoelectric effect, and gradient distribution have considerable influences on the electro-mechanical performance of the functionally graded beams. Moreover, the nonuniform piezoelectricity and polarization direction will play a leading role in the induced electric potential at a large scale. The flexoelectric effect will dominate the induced electric potential as the beam thickness decreases. This work provides helpful guidance to resolve the application of flexoelectric and piezoelectric effects in functionally graded materials, especially on micro-nano devices.


2013 ◽  
Vol 81 (5) ◽  
Author(s):  
Chenchen Liu ◽  
Shuling Hu ◽  
Shengping Shen

As a size-dependent theory, flexoelectric effect is expected to be prominent at the small scale. In this paper, the band gap structure of elastic wave propagating in a periodically layered nanostructure is calculated by transfer matrix method when the effect of flexoelectricity is taken into account. Detailed calculations are performed for a BaTiO3-SrTiO3 two-layered periodic structure. It is shown that the effect of flexoelectricity can considerably flatten the dispersion curves, reduce the group velocities of the system, and decrease the midfrequency of the band gap. For periodic two-layered structures whose sublayers are of the same thickness, the width of the band gap can be decreased due to flexoelectric effect. It is also unveiled from our analysis that when the filling fraction is small, wider gaps at lower frequencies will be acquired compared with the results without considering flexoelectric effect. In addition, the band gap structures will approach the classical result as the total thickness of the unit cell increases. Our results indicate that the scaling law does not hold when the sizes of the periodic structures reach the nanoscale dimension. Therefore, the consideration of flexoelectric effect on the band structure of a nanosized periodic system is significant for precise manipulation of elastic wave propagation and its practical application.


Author(s):  
Mohammad Malikan ◽  
Tomasz Wiczenbach ◽  
Victor A. Eremeyev

AbstractBy relying on the Euler–Bernoulli beam model and energy variational formula, we indicate critical temperature causes in the buckling of piezo-flexomagnetic microscale beams. The corresponding size-dependent approach is underlying as a second strain gradient theory. Small deformations of elastic solids are assessed, and the mathematical discussion is linear. Regardless of the pyromagnetic effects, the thermal loading of the thermal environment varies in three states along with the thickness, which is linear, uniform, and parabolic forms. We then establish the results by developing consistent shape functions that independently evaluate boundary conditions. Next, we analytically develop and explore the effective properties of the studied beam concerning vital factors. It was achieved that piezomagnetic-flexomagnetic microbeams are more affected by the thermal environment while the thermal loading is parabolically distributed across the thickness, particularly when the boundaries involve simple supports.


Sign in / Sign up

Export Citation Format

Share Document