scholarly journals A Compact Linear Ultrasonic Motor Composed by Double Flexural Vibrator

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 958
Author(s):  
Jiayin Li ◽  
Yin Wang ◽  
Ziyan Chen ◽  
Fang Cheng ◽  
Qing Yu

A minimized linear ultrasonic motor was proposed, and two flexural bimorph vibrators were utilized to form its stator. The construction of the linear ultrasonic motor and its operation principle was introduced. Two working modes with the same local deformation distribution were chosen on the basis of Finite Element Analysis (FEA). To obtain its optimized structural parameters, sensitivities on frequency difference were calculated, and a way of decreasing the frequency difference of two working modes was introduced. A prototype of the optimized model was made. The modal testing of the stator and its performance evaluation was conducted. The modal testing results were in good agreement with that of the simulation. The maximum speed of the prototype is 245 mm/s, and its maximum thrust is 1.6 N.

2013 ◽  
Vol 7 (5) ◽  
pp. 537-543 ◽  
Author(s):  
Shine-Tzong Ho ◽  
◽  
Yan-Jhang Shin

A low voltage drive linear ultrasonic motor with a semi-oval shaped stator is proposed in this paper. In the stator, two multilayer piezoelectric actuators are clamped in the holder of the stator by pre-stressing to excite a semi-oval ring. The semi-oval shaped stator is designed to have normal vibration and tangential vibration modes, thus these two orthogonal mechanical vibration modes of the stator can be excited to generate elliptical motion at the contact point of the stator. In design of the motor, ANSYS finite element analysis software was used in this study to accomplish the design and analysis. A prototype motor was fabricated and measured. For single phase signal driving, typical output of the prototype is a no-load speed of 88 mm/s and maximum thrust force of 1.96 N at a voltage of 16 Vp. For two sine wave signals driving, typical output of the prototype is a no-load speed of 106 mm/s and maximum thrust force of 3.33 N at a voltage of 16 Vp.


2016 ◽  
Vol 10 (4) ◽  
pp. 557-563 ◽  
Author(s):  
Manabu Aoyagi ◽  
◽  
Ryuichi Nakayasu ◽  
Hidekazu Kajiwara ◽  

A linear ultrasonic motor (LUSM) with two parallel beams and two multilayer piezoelectric actuators (MPAs) has been developed. The MPAs are aligned across the beams, and the force and displacement generated by the MPAs result in the deformation of the beams in the orthogonal direction. The LUSM has two types of operation modes: dynamic and static. In dynamic operation, the MPAs are driven by alternating voltages with a phase difference, and elliptical displacement motions are generated on the surfaces of the beams. Objects touching the surfaces of the beams can be moved in the same direction by friction. In addition, micro positioning is available over a wide range by combining dynamic and static operations. The characteristics of the LUSM include a maximum speed of 41 mm/s and a maximum thrust of 3.4 N at an operating voltage of 20 Vp-p. A movement range of approximately 8 μm has been confirmed during static operation.


2011 ◽  
Vol 211-212 ◽  
pp. 254-258
Author(s):  
Jun Kao Liu ◽  
Wei Shan Chen ◽  
Zhen Yu Xue

A new ring-type linear ultrasonic motor is proposed in this study. In this new design, bending vibration traveling wave is generated in a long ring by two groups of PZT ceramics bonded on the inner sides of the linear beams. Elliptical trajectory motions can be formed at particles on the teeth, which can realize the linear driving by frictional force. The working principle of the proposed design is introduced. Two bending vibration modes that have a phase difference of 90deg on space are analyzed. The elliptical motion trajectory of node on the tooth gained by the transient analysis verifies the excitation of bending traveling wave. A prototype motor is fabricated and measured, and a maximum speed of 15mm/s is reached.


2010 ◽  
Vol 434-435 ◽  
pp. 775-778
Author(s):  
Wei Shan Chen ◽  
Ying Xiang Liu ◽  
Jun Kao Liu ◽  
Sheng Jun Shi

A double driving feet linear ultrasonic motor using longitudinal vibration transducer is proposed in this paper. The stator of proposed motor contains a horizontal transducer and two vertical transducers. The horizontal transducer includes two exponential shape horns located at the leading ends, and each vertical transducer contains one exponential shape horn. The horns intersected at the tip ends where located the driving feet. The horizontal and vertical vibrations of driving feet are generated by the longitudinal vibrations of horizontal and vertical transducers, respectively. Longitudinal vibrations are superimposed in the stator and generated elliptical motions at the driving feet. The two vibration modals of stator are gained with FEM, and the resonant frequencies of two vibration modals are degenerated by adjusting the structural parameters. Transient analysis of piezoelectric coupling states the good and strong elliptical motions of driving feet, and verifies the theoretical feasibility of proposed motor.


2014 ◽  
Vol 945-949 ◽  
pp. 1327-1332 ◽  
Author(s):  
He Long Wang ◽  
Wei Shan Chen ◽  
Jun Kao Liu

A new type linear ultrasonic motor using Second-order bending and First-order torsional modes (2B-1T) is proposed. The ultrasonic motor has two driving feet and the continuous linear motions of sliders are realized by the frictional force between stator and sliders. In this new design, bending vibration is excited by d33 mode, which controls the preload pressure, and torsional vibration is excited by d15 mode, which generates the driving force. The elliptical trajectories of both feet are achieved, when the phase difference of the two modes is 90° in time and space. The working principle of ultrasonic motor using 2B-1T is simulated. A parametric model of the stator is designed. The sensitive analyses of structural parameters are gained with modal analysis. The characteristics and trajectories of driver feet are studied by transient analysis. These results can provide theoretical basis for the development of this new type ultrasonic motor.


Actuators ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 111
Author(s):  
Yin Wang ◽  
Ziyan Chen ◽  
Yunlai Shi ◽  
Changcai Cui ◽  
Fang Cheng

In order to build a motion system with high resolution, fast response, and long travel range in a probe station, a linear ultrasonic motor was investigated as an alternative to the electromagnetic counterpart in a servo system. This work focused on a longitudinal composite-mode linear ultrasonic motor for the motion servo system in a probe station. The motor was designed based on the required specifications. A finite element model was built to analyze the dynamic response of the stator. The influence of the structural parameters on the dynamic performances, i.e., sensitivity parameters, was calculated to analyze the stability of the structure. Based on these analytical works, a prototype of the stator was developed and mode testing was conducted. The experimental results showed that the proposed design was able to achieve respectable performance: Despite the dual-mode design, the frequency difference between the two working modes was minimized to 608 Hz; and the prototype could operate stably under 55.4 kHz, providing a 0.5 N load with 980 mm/s speed.


2013 ◽  
Vol 372 ◽  
pp. 392-397
Author(s):  
Zi Lei Wang

In order to reveal the Intermixture of Different Modals of Ultrasonic motor, a complete analysis about the modal types and excitation responses were analyzed by finite element analysis. The intermixture of different modals of the stator and its performance under shock excitation are found while doing modal analysis. Through the sensitivity analysis of modal frequency to structural parameters, the separation technique of stator modes is found, which can solve the intermixture problem and provide basis for accessing the structural design


Author(s):  
Giovanni Berselli ◽  
Rocco Vertechy ◽  
Gabriele Vassura ◽  
Vincenzo Parenti Castelli

The interest in actuators based on dielectric elastomer films as a promising technology in robotic and mechatronic applications is increasing. The overall actuator performances are influenced by the design of both the active film and the film supporting frame. This paper presents a single-acting actuator which is capable of supplying a constant force over a given range of motion. The actuator is obtained by coupling a rectangular film of silicone dielectric elastomer with a monolithic frame designed to suitably modify the force generated by the dielectric elastomer film. The frame is a fully compliant mechanism whose main structural parameters are calculated using a pseudo-rigid-body model and then verified by finite element analysis. Simulations show promising performance of the proposed actuator.


AIP Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 025238
Author(s):  
Danhong Lu ◽  
Qiuxiang Lin ◽  
Yanxiang Han ◽  
Bingxun Chen ◽  
Chunrong Jiang ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1830
Author(s):  
Yiheng Zhou ◽  
Baoquan Kou ◽  
He Zhang ◽  
Lu Zhang ◽  
Likun Wang

The multi-degree-of-freedom high-precision positioning system (MHPS) is one of the key technologies in many advanced industrial applications. In this paper, a novel hyperbolic magnetic field voice coil actuator using a rhombus magnet array (HMF-VCA) for MHPS is proposed. Benefiting from the especially designed rhombus magnet array, the proposed HMF-VCA has the advantage of excellent force uniformity, which makes it suitable for multi-degree-of-freedom high-precision positioning applications. First, the basic structure and operation principles of the HMF-VCA are presented. Second, the six-degree-of-freedom force and torque characteristic of the HMF-VCA is studied by three-dimensional finite element analysis (3-D FEA). Third, the influence of structural parameters on force density and force uniformity is investigated, which is conducive to the design and optimization of the HMF-VCA. Finally, a prototype is constructed, and the comparison between the HMF-VCA and conventional VCAs proves the advantage of the proposed topology.


Sign in / Sign up

Export Citation Format

Share Document