scholarly journals Synergy Factorized Bilinear Network with a Dual Suppression Strategy for Brain Tumor Classification in MRI

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 15
Author(s):  
Guanghua Xiao ◽  
Huibin Wang ◽  
Jie Shen ◽  
Zhe Chen ◽  
Zhen Zhang ◽  
...  

Automatic brain tumor classification is a practicable means of accelerating clinical diagnosis. Recently, deep convolutional neural network (CNN) training with MRI datasets has succeeded in computer-aided diagnostic (CAD) systems. To further improve the classification performance of CNNs, there is still a difficult path forward with regards to subtle discriminative details among brain tumors. We note that the existing methods heavily rely on data-driven convolutional models while overlooking what makes a class different from the others. Our study proposes to guide the network to find exact differences among similar tumor classes. We first present a “dual suppression encoding” block tailored to brain tumor MRIs, which diverges two paths from our network to refine global orderless information and local spatial representations. The aim is to use more valuable clues for correct classes by reducing the impact of negative global features and extending the attention of salient local parts. Then we introduce a “factorized bilinear encoding” layer for feature fusion. The aim is to generate compact and discriminative representations. Finally, the synergy between these two components forms a pipeline that learns in an end-to-end way. Extensive experiments exhibited superior classification performance in qualitative and quantitative evaluation on three datasets.

2020 ◽  
Vol 10 (14) ◽  
pp. 4915 ◽  
Author(s):  
Sanjiban Sekhar Roy ◽  
Nishant Rodrigues ◽  
Y-h. Taguchi

Brain tumor classification is a challenging task in the field of medical image processing. Technology has now enabled medical doctors to have additional aid for diagnosis. We aim to classify brain tumors using MRI images, which were collected from anonymous patients and artificial brain simulators. In this article, we carry out a comparative study between Simple Artificial Neural Networks with dropout, Basic Convolutional Neural Networks (CNN), and Dilated Convolutional Neural Networks. The experimental results shed light on the high classification performance (accuracy 97%) of Dilated CNN. On the other hand, Dilated CNN suffers from the gridding phenomenon. An incremental, even number dilation rate takes advantage of the reduced computational overhead and also overcomes the adverse effects of gridding. Comparative analysis between different combinations of dilation rates for the different convolution layers, help validate the results. The computational overhead in terms of efficiency for training the model to reach an acceptable threshold accuracy of 90% is another parameter to compare the model performance.


2021 ◽  
pp. 1-18
Author(s):  
Kwabena Adu ◽  
Yongbin Yu ◽  
Jingye Cai ◽  
Patrick Kwabena Mensah ◽  
Kwabena Owusu-Agyemang

Convolutional neural networks (CNNs) for automatic classification and medical image diagnosis have recently displayed a remarkable performance. However, the CNNs fail to recognize original images rotated and oriented differently, limiting their performance. This paper presents a new capsule network (CapsNet) based framework known as the multi-lane atrous feature fusion capsule network (MLAF-CapsNet) for brain tumor type classification. The MLAF-CapsNet consists of atrous and CLAHE, where the atrous increases receptive fields and maintains spatial representation, whereas the CLAHE is used as a base layer that uses an improved adaptive histogram equalization (AHE) to enhance the input images. The proposed method is evaluated using whole-brain tumor and segmented tumor datasets. The efficiency performance of the two datasets is explored and compared. The experimental results of the MLAF-CapsNet show better accuracies (93.40% and 96.60%) and precisions (94.21% and 96.55%) in feature extraction based on the original images from the two datasets than the traditional CapsNet (78.93% and 97.30%). Based on the two datasets’ augmentation, the proposed method achieved the best accuracy (98.48% and 98.82%) and precisions (98.88% and 98.58%) in extracting features compared to the traditional CapsNet. Our results indicate that the proposed method can successfully improve brain tumor classification problems and support radiologists in medical diagnostics.


2020 ◽  
Vol 10 (13) ◽  
pp. 4652
Author(s):  
Fangxiong Chen ◽  
Guoheng Huang ◽  
Jiaying Lan ◽  
Yanhui Wu ◽  
Chi-Man Pun ◽  
...  

The fine-grained image classification task is about differentiating between different object classes. The difficulties of the task are large intra-class variance and small inter-class variance. For this reason, improving models’ accuracies on the task heavily relies on discriminative parts’ annotations and regional parts’ annotations. Such delicate annotations’ dependency causes the restriction on models’ practicability. To tackle this issue, a saliency module based on a weakly supervised fine-grained image classification model is proposed by this article. Through our salient region localization module, the proposed model can localize essential regional parts with the use of saliency maps, while only image class annotations are provided. Besides, the bilinear attention module can improve the performance on feature extraction by using higher- and lower-level layers of the network to fuse regional features with global features. With the application of the bilinear attention architecture, we propose the different layer feature fusion module to improve the expression ability of model features. We tested and verified our model on public datasets released specifically for fine-grained image classification. The results of our test show that our proposed model can achieve close to state-of-the-art classification performance on various datasets, while only the least training data are provided. Such a result indicates that the practicality of our model is incredibly improved since fine-grained image datasets are expensive.


Author(s):  
V. Deepika ◽  
T. Rajasenbagam

A brain tumor is an uncontrolled growth of abnormal brain tissue that can interfere with normal brain function. Although various methods have been developed for brain tumor classification, tumor detection and multiclass classification remain challenging due to the complex characteristics of the brain tumor. Brain tumor detection and classification are one of the most challenging and time-consuming tasks in the processing of medical images. MRI (Magnetic Resonance Imaging) is a visual imaging technique, which provides a information about the soft tissues of the human body, which helps identify the brain tumor. Proper diagnosis can prevent a patient's health to some extent. This paper presents a review of various detection and classification methods for brain tumor classification using image processing techniques.


2020 ◽  
Vol 196 ◽  
pp. 106043
Author(s):  
Paul R. Clark ◽  
Robert J. Dambrino ◽  
Sean M. Himel ◽  
Zachary S. Smalley ◽  
Wondwosen K. Yimer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document