scholarly journals Enhanced Sensitivity of MoTe2 Chemical Sensor through Light Illumination

Micromachines ◽  
2017 ◽  
Vol 8 (5) ◽  
pp. 155 ◽  
Author(s):  
◽  
◽  
◽  
◽  
◽  
...  
2005 ◽  
Vol 876 ◽  
Author(s):  
Vladislav V. Styrov ◽  
Alex Y. Kabansky ◽  
Victor P. Grankin ◽  
Stanislav Kh. Shigalugov ◽  
Yuri I. Tyurin

AbstractA novel concept of solid-state chemical sensors for neutral radical detection in gas-phase and related technique are proposed based on chemiluminescence of sensing materials excited by heterogeneous chemical reactions of radicals on sensor surface. The radical species of interest include H, O, N, O2, CO, SO, NO and others. Surface activated phosphors, nano-phosphors and semiconductor films are good candidates for sensors. The advantages of these sensors are the enhanced sensitivity (~105at/cm-3or better), real-time response, reliability, proximate analysis, ability to be fabricated in combination with up-to-date nanotechnologies.


2006 ◽  
Vol 45 ◽  
pp. 1799-1802 ◽  
Author(s):  
Peter A. Lieberzeit ◽  
Gerd Glanznig ◽  
Anton Leidl ◽  
Franz L. Dickert

Inorganic frameworks obtained by the sol-gel route can be templated by a molecular imprinting (MIP) approach to generate functional cavities. Such MIP ceramics show highly appreaciable properties for chemical sensor applications, because they are inherently chemically and thermally robust. In combination with mass-sensitive devices (e.g. quartz crystal micro balance – QCM, surface transverse wave oscillator - STW), they yield highly selective and sensitive chemical sensors. Gas phase measurements with volatile organic compounds (VOCs) e.g. lead to sensitivities below 1 ppm. Sensitivity can be tuned by the sol-gel-precursor: when hydrolysing more bulky alkoxides, this leads to enhanced sensitivity by increasing porosity as a consequence of slower solvent evaporation. By adding products of oxidative oil degradation to the sol-gel mixture, we succeeded in generating sensors for degradation processes in these complex matrices. This allows parallelly monitoring both the chemical state of oil and changes in viscosity. Sensitivity is enhanced according to the Sauerbrey equation by going from 10 MHz QCM transducers to higher frequencies either by etching the quartz substrates and so reducing the resonator thickness or by applying STWs.


2008 ◽  
Vol 47 (9) ◽  
pp. 7372-7379 ◽  
Author(s):  
Wen Wang ◽  
Haekwan Oh ◽  
Keekeun Lee ◽  
Sangsik Yang

2021 ◽  
Vol 7 ◽  
Author(s):  
Ralf Lucklum ◽  
Nikolay Mukhin ◽  
Bahram Djafari Rouhani ◽  
Yan Pennec

Resonant mechanical sensors are often considered as mass balance, which responds to an analyte adsorbed on or absorbed in a thin sensitive (and selective) layer deposited on the surface of the resonant device. In a more general sense, the sensor measures properties at the interface of the mechanical resonator to the medium under inspection. A phononic crystal (PnC) sensor employs mechanical resonance as well; however, the working principle is fundamentally different. The liquid medium under inspection becomes an integral part of the PnC sensor. The liquid-filled compartment acts as a mechanical resonator. Therefore, the sensor probes the entire liquid volume within this compartment. In both sensor concepts, the primary sensor value is a resonant frequency. To become an attractive new sensing concept, specifically as a bio and chemical sensor, the PnC sensor must reach an extraordinary sensitivity. We pay attention to the liquid viscosity, which is an important factor limiting sensitivity. The main part of our analysis has been performed on 1D PnC sensors, since they underlie the same material-related acoustic dissipation mechanisms as 2D and 3D PnC sensors. We show that an optimal relation of frequency shift to bandwidth and amplitude of resonance is the key to an enhanced sensitivity of the sensor-to-liquid analyte properties. We finally address additional challenges of 2D and 3D PnC sensor design concept. We conclude that the sensor should seek for a frequency resolution close to 10−6 the probing frequency, or a resolution with speed of sound approaching 1 mm s−1, taking water-based analytes as an example.


Author(s):  
W. Lin ◽  
J. Gregorio ◽  
T.J. Holmes ◽  
D. H. Szarowski ◽  
J.N. Turner

A low-light level video microscope with long working distance objective lenses has been built as part of our integrated three-dimensional (3-D) light microscopy workstation (Fig. 1). It allows the observation of living specimens under sufficiently low light illumination that no significant photobleaching or alternation of specimen physiology is produced. The improved image quality, depth discrimination and 3-D reconstruction provides a versatile intermediate resolution system that replaces the commonly used dissection microscope for initial image recording and positioning of microelectrodes for neurobiology. A 3-D image is displayed on-line to guide the execution of complex experiments. An image composed of 40 optical sections requires 7 minutes to process and display a stereo pair.The low-light level video microscope utilizes long working distance objective lenses from Mitutoyo (10X, 0.28NA, 37 mm working distance; 20X, 0.42NA, 20 mm working distance; 50X, 0.42NA, 20 mm working distance). They provide enough working distance to allow the placement of microelectrodes in the specimen.


2003 ◽  
Author(s):  
Cynthia L. Pickett ◽  
Wendi L. Gardner ◽  
Megan Knowles

2003 ◽  
Vol 771 ◽  
Author(s):  
Michael C. Hamilton ◽  
Sandrine Martin ◽  
Jerzy Kanicki

AbstractWe have investigated the effects of white-light illumination on the electrical performance of organic polymer thin-film transistors (OP-TFTs). The OFF-state drain current is significantly increased, while the drain current in the strong accumulation regime is relatively unaffected. At the same time, the threshold voltage is decreased and the subthreshold slope is increased, while the field-effect mobility of the charge carriers is not affected. The observed effects are explained in terms of the photogeneration of free charge carriers in the channel region due to the absorbed photons.


2020 ◽  
Author(s):  
Guanjun Deng ◽  
Xinghua Peng ◽  
Zhihong Sun ◽  
Wei Zheng ◽  
Jia Yu ◽  
...  

Nature has always inspired robotic designs and concepts. It is conceivable that biomimic nanorobots will soon play a prominent role in medicine. In this paper, we developed a natural killer cell-mimic AIE nanoterminator (NK@AIEdots) by coating natural kill cell membrane on the AIE-active polymeric endoskeleton, PBPTV, a highly bright NIR-II AIE-active conjugated polymer. Owning to the AIE and soft-matter characteristics of PBPTV, as-prepared nanoterminator maintained the superior NIR-II brightness (quantum yield ~8%) and good biocompatibility. Besides, they could serve as tight junctions (TJs) modulator to trigger an intracellular signaling cascade, causing TJs disruption and actin cytoskeleton reorganization to form intercellular “green channel” to help themselves crossing Blood-Brain Barriers (BBB) silently. Furthermore, they could initiatively accumulate to glioblastoma cells in the complex brain matrix for high-contrast and through-skull tumor imaging. The tumor growth was also greatly inhibited by these nanoterminator under the NIR light illumination. As far as we known, The QY of PBPTV is the highest among the existing NIR-II luminescent conjugated polymers. Besides, the NK-cell biomimetic nanorobots will open new avenue for BBB-crossing delivery.


Sign in / Sign up

Export Citation Format

Share Document