scholarly journals Water Age Effects on the Occurrence and Concentration of Legionella Species in the Distribution System, Premise Plumbing, and the Cooling Towers

2021 ◽  
Vol 10 (1) ◽  
pp. 81
Author(s):  
Alshae R. Logan-Jackson ◽  
Joan B. Rose

In this study, droplet digital PCRTM (ddPCRTM) was used to characterize total Legionella spp. and five specific Legionella species from source (groundwater) to exposure sites (taps and cooling towers). A total of 42–10 L volume water samples were analyzed during this study: 12 from a reservoir (untreated groundwater and treated water storage tanks), 24 from two buildings (influents and taps), and six from cooling towers, all part of the same water system. The approximate water age (time in the system) for all sample locations are as follows: ~4.5, 3.4, 9.2, 20.8, and 23.2 h (h) for the groundwater to the reservoir influent, reservoir influent to the reservoir effluent, reservoir effluent to building Fa (building names are abbreviated to protect the privacy of site location), building ERC and the cooling towers, respectively. Results demonstrated that gene copies of Legionella spp. (23S rRNA) were significantly higher in the cooling towers and ERC building (p < 0.05) relative to the reservoir and building Fa (closest to reservoir). Legionella spp. (23S rRNA) were found in 100% (42/42) of water samples at concentrations ranging from 2.2 to 4.5 Log10 GC/100 mL. More specifically, L. pneumophila was found in 57% (24/42) of the water samples, followed by L. bozemanii 52% (22/42), L. longbeachae 36% (15/42), L. micdadei 23% (10/42) and L. anisa 21% (9/42) with geometric mean concentrations of 1.7, 1.7, 1.4, 1.6 and 1.7 Log10 GC/100 mL, respectively. Based on this study, it is hypothesized that water age in the distribution system and the premise-plumbing system as well as building management plays a major role in the increase of Legionella spp., (23S rRNA) and the diversity of pathogenic species found as seen in the influent, and at the taps in the ERC building—where the building water quality was most comparable to the industrial cooling towers. Other pathogenic Legionella species besides L.pneumophila are also likely amplifying in the system; thus, it is important to consider other disease relevant species in the whole water supply system—to subsequently control the growth of pathogenic Legionella in the built water environment.

Author(s):  
Sheldon Masters ◽  
Jeffrey Parks ◽  
Amrou Atassi ◽  
Marc A. Edwards

Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1407
Author(s):  
Alshae Logan-Jackson ◽  
Joan B. Rose

Pathogenic Legionella species grow optimally inside free-living amoebae to concentrations that increase risks to those who are exposed. The aim of this study was to screen a complete drinking water system and cooling towers for the occurrence of Acanthamoeba spp. and Naegleria fowleri and their cooccurrence with Legionella pneumophila, Legionella anisa, Legionella micdadei, Legionella bozemanii, and Legionella longbeachae. A total of 42 large-volume water samples, including 12 from the reservoir (water source), 24 from two buildings (influents to the buildings and exposure sites (taps)), and six cooling towers were collected and analyzed using droplet digital PCR (ddPCR). N. fowleri cooccurred with L. micdadei in 76 (32/42) of the water samples. In the building water system, the concentrations of N. fowleri and L. micdadei ranged from 1.5 to 1.6 Log10 gene copies (GC)/100 mL, but the concentrations of species increased in the cooling towers. The data obtained in this study illustrate the ecology of pathogenic Legionella species in taps and cooling towers. Investigating Legionella’s ecology in drinking and industrial waters will hopefully lead to better control of these pathogenic species in drinking water supply systems and cooling towers.


2021 ◽  
Vol 9 (12) ◽  
pp. 2543
Author(s):  
David Otto Schwake ◽  
Absar Alum ◽  
Morteza Abbaszadegan

Legionella is an environmental pathogen that is responsible for respiratory disease and is a common causative agent of water-related outbreaks. Due to their ability to survive in a broad range of environments, transmission of legionellosis is possible from a variety of sources. Unfortunately, a disproportionate amount of research that is devoted to studying the occurrence of Legionella in environmental reservoirs is aimed toward cooling towers and premise plumbing. As confirmed transmission of Legionella has been linked to many other sources, an over-emphasis on the most common sources may be detrimental to increasing understanding of the spread of legionellosis. This review aims to address this issue by cataloguing studies which have examined the occurrence of Legionella in less commonly investigated environments. By summarizing and discussing reports of Legionella in fresh water, ground water, saltwater, and distribution system drinking water, future environmental and public health researchers will have a resource to aid in investigating these pathogens in relevant sources.


2012 ◽  
Vol 79 (3) ◽  
pp. 825-834 ◽  
Author(s):  
Paul W. J. J. van der Wielen ◽  
Dick van der Kooij

ABSTRACTThe multiplication of opportunistic pathogens in drinking water supplies might pose a threat to public health. In this study, distributed unchlorinated drinking water from eight treatment plants in the Netherlands was sampled and analyzed for fungi, nontuberculous mycobacteria (NTM), and several opportunistic pathogens by using selective quantitative PCR methods. Fungi and NTM were detected in all drinking water samples, whereasLegionella pneumophila,Pseudomonas aeruginosa,Stenotrophomonas maltophilia, andAspergillus fumigatuswere sporadically observed.Mycobacterium aviumcomplex andAcanthamoebaspp. were not detected. Season had no influence on the occurrence of these organisms, except for NTM andS. maltophilia, which were present in higher numbers in the summer. Opportunistic pathogens were more often observed in premise plumbing water samples than in samples from the distribution system. The lowest number of these organisms was observed in the finished water at the plant. Thus, fungi, NTM, and some of the studied opportunistic pathogens can multiply in the distribution and premise plumbing systems. Assimilable organic carbon (AOC) and/or total organic carbon (TOC) had no clear effects on fungal and NTM numbers or onP. aeruginosa- andS. maltophilia-positive samples. However,L. pneumophilawas detected more often in water with AOC concentrations above 10 μg C liter−1than in water with AOC levels below 5 μg C liter−1. Finally, samples that containedL. pneumophila,P. aeruginosa, orS. maltophiliawere more frequently positive for a second opportunistic pathogen, which shows that certain drinking water types and/or sampling locations promote the growth of multiple opportunistic pathogens.


2021 ◽  
Vol 11 (10) ◽  
pp. 4474
Author(s):  
Erin Leslie ◽  
Jason Hinds ◽  
Faisal I. Hai

This review critically analyses the chemical and physical parameters that influence the occurrence of opportunistic pathogens in the drinking water distribution system, specifically in premise plumbing. A comprehensive literature review reveals significant impacts of water age, disinfectant residual (type and concentration), temperature, pH, and pipe materials. Evidence suggests that there is substantial interplay between these parameters; however, the dynamics of such relationships is yet to be elucidated. There is a correlation between premise plumbing system characteristics, including those featuring water and energy conservation measures, and increased water quality issues and public health concerns. Other interconnected issues exacerbated by high water age, such as disinfectant decay and reduced corrosion control efficiency, deserve closer attention. Some common features and trends in the occurrence of opportunistic pathogens have been identified through a thorough analysis of the available literature. It is proposed that the efforts to reduce or eliminate their incidence might best focus on these common features.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1432
Author(s):  
Edyta Kudlek

Every compound that potentially can be harmful to the environment is called a Contaminant of Emerging Concern (CEC). Compounds classified as CECs may undergo different transformations, especially in the water environment. The intermediates formed in this way are considered to be toxic against living organisms even in trace concentrations. We attempted to identify the intermediates formed during single chlorination and UV-catalyzed processes supported by the action of chlorine and hydrogen peroxide or ozone of selected contaminants of emerging concern. The analysis of post-processing water samples containing benzocaine indicated the formation of seven compound intermediates, while ibuprofen, acridine and β-estradiol samples contained 5, 5, and 3 compound decomposition by-products, respectively. The number and also the concentration of the intermediates decreased with the time of UV irradiation. The toxicity assessment indicated that the UV-catalyzed processes lead to decreased toxicity nature of post-processed water solutions.


2010 ◽  
Vol 10 (2) ◽  
pp. 165-172 ◽  
Author(s):  
K. Diao ◽  
M. Barjenbruch ◽  
U. Bracklow

This paper aims to explore the impacts of peaking factors on a water distribution system designed for a small city in Germany through model-based analysis. As a case study, the water distribution network was modelled by EPANET and then two specific studies were carried out. The first study tested corresponding system-wide influences on water age and energy consumption if the peaking factors used at design stage are inconsistent with ones in real situation. The second study inspected the possible relationship between the choice of peaking factors and budgets by comparing several different pipe configurations of the distribution system, obtained according to variety of peaking factors. Given the analysis results, the first study reveals that average water age will increase if peaking factors estimated at design stage are larger than real values in that specific system, and vice versa. In contrast, energy consumption will increase if peaking factors defined for system design are smaller than ones in real case, and vice versa. According to the second study, it might be possible to amplify peaking factors for design dramatically by a slight increase in the investment on this system. However, further study on budget estimation with more factors and detailed information considered should be carried out.


2004 ◽  
Vol 50 (1) ◽  
pp. 83-90 ◽  
Author(s):  
M. Pryor ◽  
S. Springthorpe ◽  
S. Riffard ◽  
T. Brooks ◽  
Y. Huo ◽  
...  

Changing regulations to lower disinfectant byproducts in drinking water is forcing utilities to switch disinfection from chlorine to monochloramine. It is generally unknown whether this will impact positively or negatively on the microbiological quality of drinking water. A utility in Florida, using water with relatively high organic carbon levels from deep wells in several wellfields, made the decision to change its disinfection regime from chlorine to chloramine in order to meet the new regulations. To assess the impacts of such a change on the microbiology of its water supplies, it undertook a number of studies before and after the change. In particular, the presence of the opportunistic pathogens Legionella and Mycobacterium, and also the composition of drinking-water biofilms, were examined. A preliminary synthesis and summary of these results are presented here. Legionella species were widely distributed in source waters and in the distribution system when chlorine was the disinfectant. In some samples they seemed to be among the dominant biofilm bacteria. Following the change to monochloramine, legionellae were not detected in the distribution system during several months of survey; however, they remained detectable at point of use, although with less species diversity. A variety of mycobacteria (21 types) were widely distributed in the distribution system when chlorine was the disinfectant, but these seemed to increase in dominance after chloramination was instituted. At point of use, only four species of mycobacteria were detected. Other changes occurring with chloramination included (a) an altered biofilm composition, (b) increased numbers of total coliforms and heterotrophs and (c) nitrification of water storage tanks. The results suggested that consideration should be given to the microbiological effects of changing disinfection regimes in drinking-water and distribution system biofilms.


2007 ◽  
Vol 55 (5) ◽  
pp. 161-168 ◽  
Author(s):  
T.H. Heim ◽  
A.M. Dietrich

Pipe relining via in situ epoxy lining is used to remediate corroded plumbing or distribution systems. This investigation examined the effects on odour, TOC, THM formation and disinfectant demand in water exposed to epoxy-lined copper pipes used for home plumbing. The study was conducted in accordance with the Utility Quick Test, a migration/leaching method for utilities to conduct sensory analysis of materials in contact with drinking water. The test was performed using water with no disinfectant and levels of chlorine and monochloramines representative of those found in the distribution system. Panelists repeatedly and consistently described a “plastic/adhesive/putty” odour in the water from the pipes. The odour intensity remained relatively constant for each of two subsequent flushes. Water samples stored in the epoxy-lined pipes showed a significant increase in the leaching of organic compounds (as TOC), and this TOC was demonstrated to react with free chlorine to form trichloromethane. Water stored in the pipes also showed a marked increase in disinfectant demand relative to the water stored in glass control flasks. A study conducted at a full scale installation at an apartment demonstrated that after installation and regular use, the epoxy lining did not yield detectable differences in water quality.


Author(s):  
Pirjo-Liisa Rantanen ◽  
Ilkka Mellin ◽  
Minna Keinänen-Toivola ◽  
Merja Ahonen ◽  
Riku Vahala

We studied the seasonal variation of nitrite exposure in a drinking water distribution system (DWDS) with monochloramine disinfection in the Helsinki Metropolitan Area. In Finland, tap water is the main source of drinking water, and thus the nitrite in tap water increases nitrite exposure. Our data included both the obligatory monitoring and a sampling campaign data from a sampling campaign. Seasonality was evaluated by comparing a nitrite time series to temperature and by calculating the seasonal indices of the nitrite time series. The main drivers of nitrite seasonality were the temperature and the water age. We observed that with low water ages (median: 6.7 h) the highest nitrite exposure occurred during the summer months, and with higher water ages (median: 31 h) during the winter months. With the highest water age (190 h), nitrite concentrations were the lowest. At a low temperature, the high nitrite concentrations in the winter were caused by the decelerated ammonium oxidation. The dominant reaction at low water ages was ammonium oxidation into nitrite and, at high water ages, it was nitrite oxidation into nitrate. These results help to direct monitoring appropriately to gain exact knowledge of nitrite exposure. Also, possible future process changes and additional disinfection measures can be designed appropriately to minimize extra nitrite exposure.


Sign in / Sign up

Export Citation Format

Share Document