scholarly journals Essential Oils from Indigenous Iranian Plants: A Natural Weapon vs. Multidrug-Resistant Escherichia coli

2022 ◽  
Vol 10 (1) ◽  
pp. 109
Author(s):  
Mohammadreza Pajohi Alamoti ◽  
Behnaz Bazargani-Gilani ◽  
Razzagh Mahmoudi ◽  
Anna Reale ◽  
Babak Pakbin ◽  
...  

Aim of this study was to investigate the antimicrobial properties of herbal plant essential oils (EOs) from selected Iranian plant species such as Ferulago angulata, Zataria multiflora, Cuminum cyminum, and Mentha longifolia against antibiotic-resistant Escherichia coli (E. coli) strains. For this purpose, the Escherichia coli strains, isolated from raw cow’s milk and local dairy products (yogurt, cream, whey, cheese, and confectionery products) collected from different areas of Hamedan province, Iran, were investigated for their resistance to antibiotics (i.e., streptomycin, tetracycline, gentamicin, chloramphenicol, ciprofloxacin, and cefixime). Thus, the E. coli strains were tested for their susceptibility to the above-mentioned essential oils. Regarding antibiotics, the E. coli strains were highly sensitive to ciprofloxacin. In relation to essential oils, the most effective antibacterial activity was observed with Zataria multiflora; also, the bacteria were semi-sensitive to Cuminum cyminum and Mentha longifolia essential oils. All strains were resistant to Ferulago angulata essential oil. According to the results, the essential oil of Zataria multiflora can be considered as a practical and alternative antibacterial strategy to inhibit the growth of multidrug-resistant E. coli of dairy origin.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hassna Jaber ◽  
Asmaa Oubihi ◽  
Imane Ouryemchi ◽  
Rachid Boulamtat ◽  
Ali Oubayoucef ◽  
...  

The aim of the present study was to determine the chemical composition of eight plant essential oils and evaluate their antibacterial activity against Escherichia coli strains isolated from different turkey organs. The essential oils were extracted by hydrodistillation and analyzed using gas chromatography-mass spectroscopy. All essential oil yielded high in a range between 2.2 and 3.12%. Gas chromatography-mass spectroscopy (GC-MS) revealed that the major constituents of Thymus vulgaris, Ocimum basilicum, Artemisia herba-alba, and Syzygium aromaticum oils were thymol (41.39%), linalool (37.16%), camphor (63.69%), and eugenol (80.83%), respectively. Results of the E. coli sensitivity evaluated by the standard antimicrobial sensitivity method varied depending on the organ of isolation. Similarly, the essential oils antimicrobial activity determined by the disc diffusion method varied all along within the organs of isolation. T. vulgaris essential oil showed the highest effective antibacterial activity against E. coli isolated from the throat with an inhibition zone diameter value of up to 23.33 mm. However, all the essential oils showed antibacterial activity and the MIC and MBC values were in the range of 1/3000 to 1/100 (v/v) and the ratios MBC/MIC were equal to 1. In conclusion, this study showed that the essential oils could be promising alternatives to overcome E. coli multiresistance in turkey.


2020 ◽  
Vol 16 (3) ◽  
pp. 373-380
Author(s):  
Mohammad B. Zendeh ◽  
Vadood Razavilar ◽  
Hamid Mirzaei ◽  
Khosrow Mohammadi

Background: Escherichia coli O157:H7 is one of the most common causes of contamination in Lighvan cheese processing. Using from natural antimicrobial essential oils is applied method to decrease the rate of microbial contamination of dairy products. The present investigation was done to study the antimicrobial effects of Z. multiflora and O. basilicum essential oils on survival of E. coli O157:H7 during ripening of traditional Lighvan cheese. Methods: Leaves of the Z. multiflora and O. basilicum plants were subjected to the Clevenger apparatus. Concentrations of 0, 100 and 200 ppm of the Z. multiflora and 0, 50 and 100 ppm of O. basilicum essential oils and also 103 and 105 cfu/ml numbers of E. coli O157:H7 were used. The numbers of the E. coli O157:H7 bacteria were analyzed during the days 0, 30, 60 and 90 of the ripening period. Results: Z. multiflora and O. basilicum essential oils had considerable antimicrobial effects against E. coli O157:H7. Using the essential oils caused decrease in the numbers of E. coli O157:H7 bacteria in 90th days of ripening (P <0.05). Using from Z. multiflora at concentration of 200 ppm can reduce the survival of E. coli O157:H7 in Lighvan cheese. Conclusion: Using Z. multiflora and O. basilicum essential oils as good antimicrobial agents can reduce the risk of foodborne bacteria and especially E. coli O157:H7 in food products.


2020 ◽  
Vol 44 (1) ◽  
Author(s):  
E. L. Mejía-Argueta ◽  
J. G. Santillán-Benítez ◽  
M. M. Canales-Martinez ◽  
A. Mendoza-Medellín

Abstract Background To test the antimicrobial potential of clove essential oil that has been less investigated on antimicrobial-resistant organisms (extended-spectrum β-lactamase-ESBL-producing Escherichia coli), we collected 135 ESBL-producing Escherichia coli strains given that E. coli is the major organism increasingly isolated as a cause of complicated urinary and gastrointestinal tract infections, which remains an important cause of therapy failure with antibiotics for the medical sector. Then, in this study, we evaluated the relationship between the antibacterial potential activity of Syzygium aromaticum essential oil (EOSA) and the expression of antibiotic-resistant genes (SHV-2, TEM-20) in plasmidic DNA on ESBL-producing E. coli using RT-PCR technique. Results EOSA was obtained by hydrodistillation. Using Kirby-Baüer method, we found that EOSA presented a smaller media (mean = 15.59 mm) in comparison with chloramphenicol (mean = 17.73 mm). Thus, there were significant differences (p < 0.0001). Furthermore, EOSA had an antibacterial activity, particularly on ECB132 (MIC: 10.0 mg/mL and MBC: 80.0 mg/mL), and a bacteriostatic effect by bactericidal kinetic. We found that the expression of antibiotic-resistant gene blaTEM-20 was 23.52% (4/17 strains) and no expression of blaSHV-2. EOSA presented such as majority compounds (eugenol, caryophyllene) using the GC–MS technique. Conclusions Plant essential oils and their active ingredients have potentially high bioactivity against a different target (membranes, cytoplasm, genetic material). In this research, EOSA might become an important adjuvant against urinary and gastrointestinal diseases caused by ESBL-producing E. coli.


Author(s):  
Emine Arman Kandirmaz ◽  
◽  
Omer Bunyamin Zelzele ◽  

The use of edible biofilms in food packaging reduces the use of petrochemical polymers that are harmful to human health, such as PE, PP, PET. The second most common biopolymer in nature, chitosan is a nontoxic, nonantigenic, biocompatible and biodegradable polymer. Considering these features, it is frequently used in food packaging applications. Increasing needs for food amount and quality canalized food ındustry to fund in new packaging techniques that improve storage life and grade of foods. Active packaging systems, one of these methods, can be designed as a sensor, antimicrobial or antimigrant in order to extend the shelf life of the food product and to inform the shelf life in possible degradation. Essential oils, which are antimicrobial environmentally friendly packaging material additives, are used due to their effective biological activities. Essential oils that have known antimicrobial properties include lavender, rosemary, mint, eucalyptus and geranium. These oils are also edible. In this study, it is aimed to produce antimicrobial, ecofriendly, edible, printable biofilm for active packaging, using chitosan and peppermint essential oil. For this purpose, chitosan biofilms containing different rates (0, 1, 2.5, 5, 10%) of peppermint essential oil were produced by solvent casting method. Surface morphology were examined by SEM. The transparency of biofilms was determined by UV spectroscopy. Antimicrobial properties of the obtained films were determined against S. aureus and E. coli. Biofilms were printed with screen printing. The color, gloss, contact angle, surface tension values of all printed and unprinted samples were examined. As a result, chitosan biofilms which are loaded with peppermint essential oil were successfully produced. Biofilms are colorless, highly transparent and have good printability. It is concluded that the amount of peppermint essential oil increased inhibitory feature against S. aureus and E. coli. When the obtained results are examined, it is determined that the printable, ecofriendly, edible biofilms can be used in active food packaging applications.


2019 ◽  
Vol 2 (3) ◽  
pp. 11-14
Author(s):  
R. M. Sachuk ◽  
Ya. S. Stravsky ◽  
YU. V. Horyuk ◽  
O. A. Katsaraba ◽  
S. V. Zhyhalyuk

Investigate the antimicrobial properties of various concentrations of vegetable essential oils in combination with an oil solution of chlorophyllipt as possible ingredients for ointments for wounds. Microbiological tests were performed according to standard methods using E. coli test cultures, S. aureus, Str. agalactiae and P. fluorescens. The results of studies of antibacterial activity of both individual ingredients and their combinations are presented, namely: 4 % essential oil of Siberian pine, 2 % essential oil of eucalyptus, 1.5 % essential oil of cloves, 1.5 % of essential oil of cedar, 2.0 % tea tree essential oil and 1.0 % chlorophyllipt oil solution. Bacteria, which are usually typical agents of wound infections, have been found to be quite sensitive to the drugs tested. High activity of essential oils and oily solution of chlorophyllipt with respect to E. coli and S. aureus was revealed. In particular, a 1.0 % oily solution of chlorophyllipt caused staphylococcal growth retardation zones whose diameters were 1.4 times larger than the antibiotic clindamycin. It was determined that representatives of gram-negative microflora were more sensitive to the investigated essential oils and chlorophyll. The optimal composition of the experimental drug called “Ointment for wounds” is offered. The results of preclinical testing showed a sufficiently high efficiency compared to traditional means. The results obtained with regard to antimicrobial activity indicate the prospect of using preparations based on the essential oil of Siberian pine, eucalyptus, carnation, cedar, tea tree and oil solution of chlorophyllipt for the treatment of skin diseases in animals. This data will help to develop new effective and safe veterinary treatments for wound care.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3864 ◽  
Author(s):  
Ramaiana Soares Melo ◽  
Águida Maria Albuquerque Azevedo ◽  
Antônio Mateus Gomes Pereira ◽  
Renan Rhonalty Rocha ◽  
Rafaela Mesquita Bastos Cavalcante ◽  
...  

The study investigated the antimicrobial activity of the essential oil extract of Ocimum gratissimum L. (EOOG) against multiresistant microorganisms in planktonic and biofilm form. Hydrodistillation was used to obtain the EOOG, and the analysis of chemical composition was done by gas chromatography coupled with mass spectrometry (GC/MS) and flame ionization detection (GC/FID). EOOG biological activity was verified against isolates of Staphylococcus aureus and Escherichia coli, using four strains for each species. The antibacterial action of EOOG was determined by disk diffusion, microdilution (MIC/MBC), growth curve under sub-MIC exposure, and the combinatorial activity with ciprofloxacin (CIP) and oxacillin (OXA) were determined by checkerboard assay. The EOOG antibiofilm action was performed against the established biofilm and analyzed by crystal violet, colony-forming unit count, and SEM analyses. EOOG yielded 1.66% w/w, with eugenol as the major component (74.83%). The MIC was 1000 µg/mL for the most tested strains. The growth curve showed a lag phase delay for both species, mainly S. aureus, and reduced the growth level of E. coli by half. The combination of EOOG with OXA and CIP led to an additive action for S. aureus. A significant reduction in biofilm biomass and cell viability was verified for S. aureus and E. coli. In conclusion, EOOG has relevant potential as a natural alternative to treat infections caused by multiresistant strains.


2008 ◽  
Vol 71 (3) ◽  
pp. 516-521 ◽  
Author(s):  
M. TURGIS ◽  
J. BORSA ◽  
M. MILLETTE ◽  
S. SALMIERI ◽  
M. LACROIX

Twenty-six different essential oils were tested for their efficiency to increase the relative radiosensitivity of Escherichia coli and Salmonella Typhi in medium-fat ground beef (23% fat). Ground beef was inoculated with E. coli O157:H7 or Salmonella (106 CFU/g), and each essential oil or one of their main constituents was added separately at a concentration of 0.5% (wt/wt). Meat samples (10 g) were packed under air or under modified atmosphere and irradiated at doses from 0 to 1 kGy for the determination of the D10-value of E. coli O157:H7, and from 0 to 1.75 kGy for the determination of the D10-value of Salmonella Typhi. Depending on the compound tested, the relative radiation sensitivity increased from 1 to 3.57 for E. coli O157:H7 and from 1 to 3.26 for Salmonella Typhi. Addition of essential oils or their constituents before irradiation also reduced the irradiation dose needed to eliminate both pathogens. In the presence of Chinese cinnamon or Spanish oregano essential oils, the minimum doses required to eliminate the bacteria were reduced from 1.2 to 0.35 and from 1.4 to 0.5 for E. coli O157:H7 and Salmonella Typhi, respectively. Cinnamon, oregano, and mustard essential oils were the most effective radiosensitizers.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11081
Author(s):  
Yutian Yu ◽  
Jie Dong ◽  
Yanlu Wang ◽  
Xi Gong

Background Transcriptome analysis plays a central role in elucidating the complexity of gene expression regulation in Escherichia coli. In recent years, the overuse of antibiotics has led to an increase in antimicrobial resistance, which greatly reduces the efficacy of antibacterial drugs and affects people’s health. Therefore, several researchers are focused on finding other materials, which could replace or supplement antibiotic treatment. Methods E. coli was treated with water, acetone and Cinnamomum camphora essential oils, respectively. The antibacterial activity was assessed using the minimum inhibitory concentration (MIC), the minimum bactericidal concentration (MBC), the dry weight and the wet weight of the cells. To explore the antibacterial mechanism of the oil, the RNA-Seq analysis was adopted under three different treatments. Finally, the expression of related genes was verified by Quantitative PCR. Results In this study, we showed that the C. Camphora essential oil exerted a strong antibacterial effect. Our results showed that the inhibitory efficiency increased with increasing of the concentration of essential oil. RNA-seq analysis indicated that the essential oil inhibited the growth of E. coli by inhibiting the metabolism, chemotaxis, and adhesion, meanwhile, life activities were maintained by enhancing E. coli resistance reactions. These results are contributed to uncover the antimicrobial mechanisms of essential oils against E. coli, and the C. Camphora essential oil could be applied as an antibacterial agent to replace or ally with antibiotic.


2015 ◽  
Vol 19 (2) ◽  
pp. 75-80 ◽  
Author(s):  
Maria Lucia Mureşan

Abstract This paper investigates the antimicrobial action of the extracts and essential oil of wildgrowing Tanacetum vulgare L on: Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacilus subtilis, using the diffusion disc method. The essential oils but also the ethanolic extracts tested exhibited moderate action on Staphilococcus aureus and Bacillus subtilis and low action on E. coli and Pseudomonas aeruginosa. The moderate antimicrobial activity is related to the amount of some chemical components of the essential oil of T. vulgare flos. Thus, this paper presents also the quantitative and qualitative analysis of the essential oils of T. vulgare harvested from two different habitats. The essential oils obtained by steam-distillation were analysed by gas-cromatography coupled with mass spectrometry (GC-MS).


2018 ◽  
Vol 48 (10) ◽  
Author(s):  
Fernanda Cristina Kandalski Bortolotto ◽  
Stephane Pini Costa Ceccoti ◽  
Paloma Bianca Orso ◽  
Hanna Lethycia Wolupeck ◽  
Richard Alan Holley ◽  
...  

ABSTRACT: Escherichia coli O157:H7 is a toxigenic serotype of E. coli and has been associated with foodborne outbreaks involving meat products, vegetables and fresh produces worldwide. Salts for curing are usually employed as antimicrobials in the production of pork sausages. However, salts do not have a significant inhibitory effect on enterobacteria. Due to the growing demand for natural foods, the use of essential oils has been proposed as natural antimicrobials in food. This study aimed to evaluate the effects of garlic essential oil (GO) and allyl isothiocyanate (AITC) against E. coli O157:H7 in vitro and in pork sausage. The Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) of these oils, alone and in combination, against E. coli O157:H7 were determined. Pork sausage was inoculated with 8log CFU/g E. coli O157:H7 and different combinations of GO and AITC. A control group was performed without essential oils. Sausages were packaged and stored at 6°C for 20 days. E. coli O157:H7 population and instrumental color (L*, a*, b*, C* and hue) determinations were performed at 5-day intervals. AITC showed lower MIC and MBC than GO. When combined, AITC and GO showed a synergistic effect. Treatments T3 and T4 showed 1,01log CFU and 1,87log CFU reduction of E. coli O157:H7 compared to control. The redness and the chroma of sausages treated with AITC and GO increased during storage. Together, GO and AITC caused minor changes in taste and flavor of sausages, and were able to reduce the population of E. coli O157:H7 and to maintain the red color of sausage during storage.


Sign in / Sign up

Export Citation Format

Share Document