scholarly journals Antimicrobial activity of Syzygium aromaticum L. essential oil on extended-spectrum beta-lactamases-producing Escherichia coli

2020 ◽  
Vol 44 (1) ◽  
Author(s):  
E. L. Mejía-Argueta ◽  
J. G. Santillán-Benítez ◽  
M. M. Canales-Martinez ◽  
A. Mendoza-Medellín

Abstract Background To test the antimicrobial potential of clove essential oil that has been less investigated on antimicrobial-resistant organisms (extended-spectrum β-lactamase-ESBL-producing Escherichia coli), we collected 135 ESBL-producing Escherichia coli strains given that E. coli is the major organism increasingly isolated as a cause of complicated urinary and gastrointestinal tract infections, which remains an important cause of therapy failure with antibiotics for the medical sector. Then, in this study, we evaluated the relationship between the antibacterial potential activity of Syzygium aromaticum essential oil (EOSA) and the expression of antibiotic-resistant genes (SHV-2, TEM-20) in plasmidic DNA on ESBL-producing E. coli using RT-PCR technique. Results EOSA was obtained by hydrodistillation. Using Kirby-Baüer method, we found that EOSA presented a smaller media (mean = 15.59 mm) in comparison with chloramphenicol (mean = 17.73 mm). Thus, there were significant differences (p < 0.0001). Furthermore, EOSA had an antibacterial activity, particularly on ECB132 (MIC: 10.0 mg/mL and MBC: 80.0 mg/mL), and a bacteriostatic effect by bactericidal kinetic. We found that the expression of antibiotic-resistant gene blaTEM-20 was 23.52% (4/17 strains) and no expression of blaSHV-2. EOSA presented such as majority compounds (eugenol, caryophyllene) using the GC–MS technique. Conclusions Plant essential oils and their active ingredients have potentially high bioactivity against a different target (membranes, cytoplasm, genetic material). In this research, EOSA might become an important adjuvant against urinary and gastrointestinal diseases caused by ESBL-producing E. coli.

2021 ◽  
Vol 42 (4) ◽  
pp. 945-954
Author(s):  
M.S. Abdel-Hamid ◽  
◽  
H.A. Mousa ◽  
M.Abd El-Mongy ◽  
M.M. Hazza ◽  
...  

Aim: To evaluate the antimicrobial activities of some aromatic essential oils against a new pathogenic Escherichia coli strain with extended-spectrum beta-lactamase (ESBL) activity. Methodology: A total of 66 enteric bacteria were isolated from 250 urine samples that had been collected from human patients at different hospitals in Cairo, Egypt. Virulence factors of pathogenic isolates were determined, and the antibacterial activities of cinnamon bark oil and clove oil against E. coli EMH-542017 were estimated using the VITEK 2 system; this strain was confirmed as E. coli based on its 16S rRNA gene sequence, which was deposited in NCBI GenBank. Finally, modification of the bacterial cell wall following treatment with essential oil was observed with transmission electron microscopy (TEM). Results: The results confirmed that E. coli EMH-542017 was capable of producing hydroxamate siderophores and was resistant to 11 antibiotics, which were significantly observed with different grades. Nevertheless, screening by the combination disc method showed that 20 isolates were ESBL producers. Polymerase chain reaction analysis confirmed that the selected isolate EMH-542017 was positive for both ESBL blaCTX-M-9 genes. The addition of cinnamon and clove oils at levels of 12.5, 25, and 50 mg ml-1 was revealed to have high bactericidal effects on bacterial growth, and a change in bacterial cell morphology was detected by TEM, in which the cell wall seemed to be damaged and the flagella were lost following essential oil treatments, demonstrating that essential oil treatments are an effective means of suppressing multidrug-resistant E. coli. Interpretation: Despite these results, there is an urgent need to identify effective, safe, and economical treatments to reduce and protect against urinary tract infections in Egyptian patients.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 850
Author(s):  
Shobha Giri ◽  
Vaishnavi Kudva ◽  
Kalidas Shetty ◽  
Veena Shetty

As the global urban populations increase with rapid migration from rural areas, ready-to-eat (RTE) street foods are posing food safety challenges where street foods are prepared with less structured food safety guidelines in small and roadside outlets. The increased presence of extended-spectrum-β-lactamase (ESBL) producing bacteria in street foods is a significant risk for human health because of its epidemiological significance. Escherichia coli and Klebsiella pneumoniae have become important and dangerous foodborne pathogens globally for their relevance to antibiotic resistance. The present study was undertaken to evaluate the potential burden of antibiotic-resistant E. coli and K. pneumoniae contaminating RTE street foods and to assess the microbiological quality of foods in a typical emerging and growing urban suburb of India where RTE street foods are rapidly establishing with public health implications. A total of 100 RTE food samples were collected of which, 22.88% were E. coli and 27.12% K. pneumoniae. The prevalence of ESBL-producing E. coli and K. pneumoniae was 25.42%, isolated mostly from chutneys, salads, paani puri, and chicken. Antimicrobial resistance was observed towards cefepime (72.9%), imipenem (55.9%), cefotaxime (52.5%), and meropenem (16.9%) with 86.44% of the isolates with MAR index above 0.22. Among β-lactamase encoding genes, blaTEM (40.68%) was the most prevalent followed by blaCTX (32.20%) and blaSHV (10.17%). blaNDM gene was detected in 20.34% of the isolates. This study indicated that contaminated RTE street foods present health risks to consumers and there is a high potential of transferring multi-drug-resistant bacteria from foods to humans and from person to person as pathogens or as commensal residents of the human gut leading to challenges for subsequent therapeutic treatments.


2022 ◽  
Vol 10 (1) ◽  
pp. 109
Author(s):  
Mohammadreza Pajohi Alamoti ◽  
Behnaz Bazargani-Gilani ◽  
Razzagh Mahmoudi ◽  
Anna Reale ◽  
Babak Pakbin ◽  
...  

Aim of this study was to investigate the antimicrobial properties of herbal plant essential oils (EOs) from selected Iranian plant species such as Ferulago angulata, Zataria multiflora, Cuminum cyminum, and Mentha longifolia against antibiotic-resistant Escherichia coli (E. coli) strains. For this purpose, the Escherichia coli strains, isolated from raw cow’s milk and local dairy products (yogurt, cream, whey, cheese, and confectionery products) collected from different areas of Hamedan province, Iran, were investigated for their resistance to antibiotics (i.e., streptomycin, tetracycline, gentamicin, chloramphenicol, ciprofloxacin, and cefixime). Thus, the E. coli strains were tested for their susceptibility to the above-mentioned essential oils. Regarding antibiotics, the E. coli strains were highly sensitive to ciprofloxacin. In relation to essential oils, the most effective antibacterial activity was observed with Zataria multiflora; also, the bacteria were semi-sensitive to Cuminum cyminum and Mentha longifolia essential oils. All strains were resistant to Ferulago angulata essential oil. According to the results, the essential oil of Zataria multiflora can be considered as a practical and alternative antibacterial strategy to inhibit the growth of multidrug-resistant E. coli of dairy origin.


2021 ◽  
Vol 37 (2) ◽  
pp. 56-73
Author(s):  
F Iseghohi ◽  
J.C Igwe ◽  
M Galadima ◽  
A.F Kuta ◽  
A.M Abdullahi ◽  
...  

Globally, urinary tract infections are one of the most common infections in need of urgent clinical attention. The prevalence of extended spectrum beta-lactamases (ESBL)- producing Escherichia coli isolated from urine samples of some UTI patients and s of apparently healthy individuals in Minna, Nigeria, is investigated. Standard microbiological techniques were used to conduct this study. A total of 170 catch midstream urine samples submitted to the Medical Microbiology Laboratories of 4 different hospitals (and samples from healthy individuals) were randomly collected for 5 months and examined for microbial growths. Female patients (65.9%) submitted more urine samples for UTI test than their male counterpart (34.1%). The age ranges of 21 -30 (26.5%) and 31 - 40 (25.3%) had the highest percentages of infection rate while those within the ages 1- 10 (3.5%) and ≥ 71 (2.3%) were the least infected. This study observed a prevalence of 23.5% of E. coli in Minna metropolis and a significant number (30%) of healthy individuals (HI) was observed to harbor the E. coli in their urine. The isolates were highly susceptible to Gentamicin (65%), Ofloxacin (65%), Tetracycline (62.5%), Cotrimoxazole (62.5%), and Streptomycin (57.5%). Mildly susceptible to Pefloxacin (37.5%), Chloramphenicol (37.5%), and Ciprofloxacin (35%). There were significant resistance to most of the beta-lactames tested [Cefuroxime (80%), Amoxicillin (42.5%), Augmentin (40), Cefotaxime (20%) and Ceftaxidime (7.5%)]. Two of the isolates were resistant to all the 13 antibiotics tested; 70% (28) of the isolates had multiple antibiotics resistance index (MARI) ≥0.3. Multidrug resistance was expressed in 37.5% of the isolates tested. The study showed a vast resistant pool in the environment. Only 25% of the E. coli isolated from the urine samples produced beta-lactamases phenotypically, most of which expressed resistance to more than 5 of the antibiotics tested and had MARI of ≥ 0.5. Further evaluation showed that 25% (10/40) of the E. coli isolated from the UTI patients in Minna, Nigeria, were ESBL- producers and could harbor one or two of the genes. TEM gene was expressed in 70% (7) of the isolates that produced ESBL phenotypically, 60% 6) harbored CTXM gene, 20% (2) had the OXA gene while none of the bacteria harbored the SHV gene. The study established a 5.9% ESBL prevalence among the E. coli isolated from UTI in the environment studied. This study established that E. coli is one of the prevalent bacteri urea majorly isolated from UTI patients in Minna. The prevalent E. coli are multidrug resistant and could harbor more than one ESBL gene . keywords: Escherichia coli, Minna, UTI, ESBL, Multidrug resistance


2013 ◽  
Vol 57 (9) ◽  
pp. 4512-4517 ◽  
Author(s):  
Etienne Ruppé ◽  
Brandusa Lixandru ◽  
Radu Cojocaru ◽  
Çağrı Büke ◽  
Elisabeth Paramythiotou ◽  
...  

ABSTRACTExtended-spectrum-beta-lactamase (ESBL)-producingEscherichia coli(ESBLE. coli) strains are of major concern because few antibiotics remain active against these bacteria. We investigated the association between the fecal relative abundance (RA) of ESBL-producingE. coli(ESBL-RA) and the occurrence of ESBLE. coliurinary tract infections (UTIs). The first stool samples passed after suspicion of UTI from 310 women with subsequently confirmedE. coliUTIs were sampled and tested for ESBL-RA by culture on selective agar. Predictive values of ESBL-RA for ESBLE. coliUTI were analyzed for women who were not exposed to antibiotics when the stool was passed. ESBLE. coliisolates were characterized for ESBL type, phylogroup, relatedness, and virulence factors. The prevalence of ESBLE. colifecal carriage was 20.3%, with ESBLE. coliUTIs being present in 12.3% of the women. The mean ESBL-RA (95% confidence interval [CI]) was 13-fold higher in women exposed to antibiotics at the time of sampling than in those not exposed (14.3% [range, 5.6% to 36.9%] versus 1.1% [range, 0.32% to 3.6%], respectively;P< 0.001) and 18-fold higher in women with ESBLE. coliUTI than in those with anotherE. coliUTI (10.0% [range, 0.54% to 100%] versus 0.56% [range, 0.15% to 2.1%[, respectively;P< 0.05). An ESBL-RA of <0.1% was 100% predictive of a non-ESBLE. coliUTI. ESBL type, phylogroup, relatedness, and virulence factors were not found to be associated with ESBL-RA. In conclusion, ESBL-RA was linked to the occurrence of ESBLE. coliUTI in women who were not exposed to antibiotics and who had the same clone ofE. coliin urine samples and fecal samples. Especially, a low ESBL-RA appeared to be associated with a low risk of ESBLE. coliinfection.


2007 ◽  
Vol 1 (03) ◽  
pp. 257-262 ◽  
Author(s):  
Samuel Kariuki ◽  
Gunturu Revathi ◽  
John Corkill ◽  
John Kiiru ◽  
Joyce Mwituria ◽  
...  

Background: Uropathogenic Escherichia coli are increasingly becoming resistant to flouroquinolones and to other commonly available antimicrobials. We sought to investigate the genetic basis for fluoroquinolone and extended spectrum beta-lactam (ESBL) resistance in 17 fluoroquinolone-resistant (MIC of levofloxacin and ciprofloxacin >32 μg/ml) E. coli isolated from patients with urinary tract infections (UTIs). Methods: We applied PCR and Pulsed Field Gel Electrophoresis (PFGE) to characterize resistance genes and to determine clonal relatedness of strains, respectively. Results: Twelve of the 17 E. coli were resistant to multiple drugs, including ampicillin, co-amoxyclav, cefotaxime, ceftriaxone, ceftazidime and gentamicin and nalidixic acid and produced plasmid-mediated CTX-M-15 type ESBLs and CMY-2 AmpC type enzymes. The other 5 E. coli that were non-ESBL-producing were multiply resistant to ampicillin, nitrofurantoin, cefoxitin, nalidixic acid. Resistance to fluoroquinolones resulted from a combination of the presence of qnrA, qnrB, ciprofloxacin acetylating enzyme designated aac(6’)-1b-cr, and mutations in the two amino acid substitutions; 83 Serine (TCG) to Leucine (TTG) and 87 Aspartic acid (GAC) to Asparagine (AAC). Conclusion: Antibiogram patterns and PFGE of E. coli showed that these were community acquired UTI caused by pockets of clonally-related and some discreet strain types. Plasmid-mediated CTX-M-15 beta-lactamases and CMY-2 AmpC enzymes and fluoroquinolone resistant E. coli are becoming increasingly prevalent in hospitals in Kenya, posing a major challenge in the management of UTIs.


Author(s):  
Alaa Abood Yasir OKAB ◽  
Manal B SALIH

Escherichia coli (E. coli) is the most common type of pathogen that causes Urinary tract infection disease. It can be presented as a pathogenic or non-pathogenic strain and found not only in the animal but also in the human intestine. This bacterium can cause opportunistic infection when the human host comprised of thalassemia patients or changes the healthy hemostatic flora. This study aimed to analyze the presence of bacteria in thalassemia patients with urinary tract infection. A total of 303 samples were collected during the period from August 2019 to January 2020 from thalassemia patients who suffered from urinary tract infection. The results showed that there were 6.9% of patients infected with E. coli, 2.6% of patients were infected with S. aureus, 0.7% with both Proteus and Klebsiella, while 89.1% of patients had a negative sample for bacteria. Also, the incidence of urinary tract infections in females is higher than in males. Besides, its occurrence in rural areas is higher than in city residents. Moreover, among 16 antibiotics tested to sensitize bacteria to antibiotics, Imipenem showed 100% efficacy on all isolated bacteria. In contrast, Netilmicin showed 80.1% efficacy, Gentamycin 80.1%, and Amikacin 76.2%. Ampicillin, Aztreonam, Amoxicillin-Clavulanic Acid, Tetracycline, and Ticarcillin-Clavulanic Acid, did not show any effectiveness toward the bacteria while other antibiotics showed different activities. Furthermore, the isolated microbes from thalassemia patients were the highest resistance to antibiotics in comparison with other studies, and this antibiotic-resistant may be due to the weakening of the patient's immune status and frequent blood taking and the antibodies it contains.


2019 ◽  
Author(s):  
Shuzhen Xiao ◽  
Peng Cui ◽  
Wanliang Shi ◽  
Ying Zhang

AbstractEscherichia coli is the most dominant pathogen causing urinary tract infections (UTIs), but the current most frequently prescribed antibiotics do not always effectively cure the infection due to quiescent persister bacteria. While it has been reported that some essential oils have antimicrobial activity against growing E. coli, the activity of essential oils against the non-growing stationary phase E. coli which is enriched in persisters has not been investigated. We evaluated the activity of 140 essential oils against stationary phase uropathogenic E. coli UTI89 and identified 39, 8 and 3 essential oils at 0.5%, 0.25% and 0.125% concentrations to have high activity against stationary phase E. coli. Among the top eight essential oils, Oregano showed higher activity than the known persister drug tosufloxacin. The other top seven hits included Allspice, Bandit "Thieves", Cinnamon bark, Syzygium aromaticum, Health shield, Cinnamon leaf and Clove bud. In Oregano essential oil drug combination studies with common UTI antibiotics, Oregano plus quinolone drugs (tosufloxacin, levofloxacin, ciprofloxacin) completely eradicated all stationary phase E. coli cells, partially enhanced the activity of nitrofurantoin, but had no apparent enhancement for fosfomycin, meropenem and cefdinir. Our findings may facilitate development of more effective treatments for persistent UTIs.


2006 ◽  
Vol 11 (35) ◽  
Author(s):  
H Pelly ◽  
D Morris ◽  
E O’Connell ◽  
B Hanahoe ◽  
C Chambers ◽  
...  

In May 2006, a consultant microbiologist noted two isolates of extended spectrum beta-lactamase (ESBL)-producing Escherichia coli associated with urinary tract infections in a single week in two residents in a nursing home in Ireland


2014 ◽  
Vol 58 (12) ◽  
pp. 7102-7111 ◽  
Author(s):  
A. Tratselas ◽  
M. Simitsopoulou ◽  
A. Giannakopoulou ◽  
I. Dori ◽  
S. Saoulidis ◽  
...  

ABSTRACTUrinary tract infections (UTIs) due to extended-spectrum-β-lactamase (ESBL)-producingEnterobacteriaceaein children are becoming more frequent, and they are commonly treated initially with a second- or third-generation cephalosporin. We developed a murine model of ascending UTI caused by ESBL-producingEscherichia coli. Using this model, we investigated the renal bacterial burden, interleukin-6 (IL-6) expression, and histopathological alterations caused by ESBL- and non-ESBL-producing bacteria after 1, 2, or 6 days with or without ceftriaxone therapy. The renal bacterial burden, IL-6 concentration, and histological inflammatory lesions were not significantly different between mice infected with ESBL- and non-ESBL-producing bacteria without treatment at any of the time points examined. Following ceftriaxone administration, the bacterial burden was eliminated in the kidneys of mice infected with ESBL- and non-ESBL-producing bacteria on the 6th postinfection day. The histological analysis demonstrated that among mice treated with ceftriaxone, those infected with ESBL-producing bacteria had more profound renal alterations than those infected with non-ESBL-producing bacteria on the 6th day (P< 0.001). In comparison, microbiological outcomes did not differ significantly between mice infected with ESBL- and non-ESBL-producing bacteria at any of the time points examined. The effectiveness of ceftriaxone in mice with UTIs due to ESBL-producingE. colimay have therapeutic implications; it is, however, hampered by limited activity on the histopathological lesions, a finding that needs further investigation.


Sign in / Sign up

Export Citation Format

Share Document