scholarly journals The Microbial Communities of Leaves and Roots Associated with Turtle Grass (Thalassia testudinum) and Manatee Grass (Syringodium filliforme) are Distinct from Seawater and Sediment Communities, but Are Similar between Species and Sampling Sites

2018 ◽  
Vol 7 (1) ◽  
pp. 4 ◽  
Author(s):  
Kelly Ugarelli ◽  
Peeter Laas ◽  
Ulrich Stingl

Seagrasses are vital members of coastal systems, which provide several important ecosystem services such as improvement of water quality, shoreline protection, and serving as shelter, food, and nursery to many species, including economically important fish. They also act as a major carbon sink and supply copious amounts of oxygen to the ocean. A decline in seagrasses has been observed worldwide, partly due to climate change, direct and indirect human activities, diseases, and increased sulfide concentrations in the coastal porewaters. Several studies have shown a symbiotic relationship between seagrasses and their microbiome. For instance, the sulfur, nitrogen, and carbon cycles are important biochemical pathways that seem to be linked between the plant and its microbiome. The microbiome presumably also plays a key role in the health of the plant, for example in oxidizing phyto-toxic sulfide into non-toxic sulfate, or by providing protection for seagrasses from pathogens. Two of the most abundant seagrasses in Florida include Thalassia testudinum (turtle grass) and Syringodium filliforme (manatee grass), yet there is little data on the composition of the microbiome of these two genera. In this study, the microbial composition of the phyllosphere and rhizosphere of Thalassia testudinum and Syringodium filiforme were compared to water and sediment controls using amplicon sequencing of the V4 region of the 16S rRNA gene. The microbial composition of the leaves, roots, seawater, and sediment differ from one another, but are similar between the two species of seagrasses.

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Sesilje Weiss ◽  
David Taggart ◽  
Ian Smith ◽  
Kristofer M. Helgen ◽  
Raphael Eisenhofer

Abstract Background Marsupials are born much earlier than placental mammals, with most crawling from the birth canal to the protective marsupium (pouch) to further their development. However, little is known about the microbiology of the pouch and how it changes throughout a marsupial’s reproductive cycle. Here, using stringent controls, we characterized the microbial composition of multiple body sites from 26 wild Southern Hairy-nosed Wombats (SHNWs), including pouch samples from animals at different reproductive stages. Results Using qPCR of the 16S rRNA gene we detected a microbial community in the SHNW pouch. We observed significant differences in microbial composition and diversity between the body sites tested, as well as between pouch samples from different reproductive stages. The pouches of reproductively active females had drastically lower microbial diversity (mean ASV richness 19 ± 8) compared to reproductively inactive females (mean ASV richness 941 ± 393) and were dominated by gram positive bacteria from the Actinobacteriota phylum (81.7–90.6%), with the dominant families classified as Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, and Dietziaceae. Three of the five most abundant sequences identified in reproductively active pouches had closest matches to microbes previously isolated from tammar wallaby pouches. Conclusions This study represents the first contamination-controlled investigation into the marsupial pouch microbiota, and sets a rigorous framework for future pouch microbiota studies. Our results indicate that SHNW pouches contain communities of microorganisms that are substantially altered by the host reproductive cycle. We recommend further investigation into the roles that pouch microorganisms may play in marsupial reproductive health and joey survival.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 472
Author(s):  
Yeong-Ji Oh ◽  
Ye-Rin Park ◽  
Jungil Hong ◽  
Do-Yup Lee

The light-emitting diode (LED) has been widely used in the food industry, and its application has been focused on microbial sterilization, specifically using blue-LED. The investigation has been recently extended to characterize the biotic and abiotic (photodynamic) effects of different wavelengths. Here, we investigated LED effects on kimchi fermentation. Kimchi broths were treated with three different colored-LEDs (red, green, and blue) or kept in the dark as a control. Multiomics was applied to evaluate the microbial taxonomic composition using 16S rRNA gene amplicon sequencing, and the metabolomic profiles were determined using liquid chromatography–Orbitrap mass spectrometry. Cell viability was tested to determine the potential cytotoxicity of the LED-treated kimchi broths. First, the amplicon sequencing data showed substantial changes in taxonomic composition at the family and genus levels according to incubation (initial condition vs. all other groups). The differences among the treated groups (red-LED (RLED), green-LED (GLED), blue-LED (BLED), and dark condition) were marginal. The relative abundance of Weissella was decreased in all treated groups compared to that of the initial condition, which coincided with the decreased composition of Lactobacillus. Compositional changes were relatively high in the GLED group. Subsequent metabolomic analysis indicated a unique metabolic phenotype instigated by different LED treatments, which led to the identification of the LED treatment-specific and common compounds (e.g., luteolin, 6-methylquinoline, 2-hydroxycinnamic acid, and 9-HODE). These results indicate that different LED wavelengths induce characteristic alterations in the microbial composition and metabolomic content, which may have applications in food processing and storage with the aim of improving nutritional quality and the safety of food.


2017 ◽  
Vol 117 (7) ◽  
pp. 964-978 ◽  
Author(s):  
Ann-Sofie R. Poulsen ◽  
Nadieh de Jonge ◽  
Sugiharto Sugiharto ◽  
Jeppe L. Nielsen ◽  
Charlotte Lauridsen ◽  
...  

AbstractThe aim of this study was to characterise the gut microbiota composition of piglets fed bovine colostrum (BC), milk replacer (MR) or sow milk (SM) in the post-weaning period. Piglets (n36), 23-d old, were randomly allocated to the three diets. Faecal samples were collected at 23, 25, 27 and 30 d of age. Digesta from the stomach, ileum, caecum and mid-colon was collected at 30 d of age. Bacterial DNA from all samples was subjected to amplicon sequencing of the 16S rRNA gene. Bacterial enumerations by culture and SCFA analysis were conducted as well. BC-piglets had the highest abundance ofLactococcusin the stomach (P<0·0001) and ileal (P<0·0001) digesta, whereas SM-piglets had the highest abundance ofLactobacillusin the stomach digesta (P<0·0001). MR-piglets had a high abundance of Enterobacteriaceae in the ileal digesta (P<0·0001) and a higher number of haemolytic bacteria in ileal (P=0·0002) and mid-colon (P=0·001) digesta than SM-piglets. BC-piglets showed the highest colonic concentration of iso-butyric and iso-valeric acid (P=0·02). Sequencing and culture showed that MR-piglets were colonised by a higher number of Enterobacteriaceae, whereas the gut microbiota of BC-piglets was characterised by a change in lactic acid bacteria genera when compared with SM-piglets. We conclude that especially the ileal microbiota of BC-piglets had a closer resemblance to that of SM-piglets in regard to the abundance of potential enteric pathogens than did MR-piglets. The results indicate that BC may be a useful substitute for regular milk replacers, and as a feeding supplement in the immediate post-weaning period.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Davide Porcellato ◽  
Roger Meisal ◽  
Alberto Bombelli ◽  
Judith A. Narvhus

AbstractThe importance of the microbiome for bovine udder health is not well explored and most of the knowledge originates from research on mastitis. Better understanding of the microbial diversity inside the healthy udder of lactating cows might help to reduce mastitis, use of antibiotics and improve animal welfare. In this study, we investigated the microbial diversity of over 400 quarter milk samples from 60 cows sampled from two farms and on two different occasions during the same lactation period. Microbiota analysis was performed using amplicon sequencing of the 16S rRNA gene and over 1000 isolates were identified using MALDI-TOF MS. We detected a high abundance of two bacterial families, Corynebacteriaceae and Staphylococcaceae, which accounted for almost 50% of the udder microbiota of healthy cows and were detected in all the cow udders and in more than 98% of quarter milk samples. A strong negative correlation between these bacterial families was detected indicating a possible competition. The overall composition of the udder microbiota was highly diverse and significantly different between cows and between quarter milk samples from the same cow. Furthermore, we introduced a novel definition of a dysbiotic quarter at individual cow level, by analyzing the milk microbiota, and a high frequency of dysbiotic quarter samples were detected distributed among the farms and the samples. These results emphasize the importance of deepening the studies of the bovine udder microbiome to elucidate its role in udder health.


2016 ◽  
Vol 62 (6) ◽  
pp. 538-541 ◽  
Author(s):  
Marija Kaevska ◽  
Petra Videnska ◽  
Karel Sedlar ◽  
Iva Bartejsova ◽  
Alena Kralova ◽  
...  

The aim of this study was to determine possible differences in the faecal microbiota of dairy cows infected with Mycobacterium avium subsp. paratuberculosis (Johne’s disease) in comparison with noninfected cows from the same herds. Faecal samples from cows in 4 herds were tested for M. avium subsp. paratuberculosis by real-time PCR, and faecal bacterial populations were analysed by 454 pyrosequencing of the 16S rRNA gene. The most notable differences between shedding and nonshedding cows were an increase in the genus Psychrobacter and a decrease in the genera Oscillospira, Ruminococcus, and Bifidobacterium in cows infected with M. avium subsp. paratuberculosis. The present study is the first to report the faecal microbial composition in dairy cows infected with M. avium subsp. paratuberculosis.


Author(s):  
Dorota Tekielska ◽  
Eliška Peňázová ◽  
Tamás Kovács ◽  
Břetislav Křižan ◽  
Jana Čechová ◽  
...  

The study overviews results of bacterial incidence in in vitro plant tissue cultures obtained from commercial laboratory dealing with plants micropropagation. For the exploration, the 454 pyrosequencing of the 16S rRNA gene was used. Three samples of plant in vitro cultures with visual bacterial contamination were subjected for identification of present bacteria. Eleven genera as Acinetobacter, Lactobacillus, Methylobacterium, Roseomonas, Microbacterium, Mycobacterium, Curtobacterium, Acidovorax, Magnetospirillum, Chryseobacterium and Ralstonia were detected. Obtained results confirmed the advantages of high‑throughput amplicon sequencing analysis for identification of bacterial communities in contaminated plant in vitro cultures what provides an important information for applying appropriate measures to eliminate bacterial contamination.


2021 ◽  
Vol 10 (33) ◽  
Author(s):  
John A. Kyndt

Gull Point State Park is located on a peninsula on the west shore of West Okoboji Lake (Iowa, USA). It is the primary state park in the Iowa Great Lakes region. Sediment and water samples from three locations at the Gull Point pond were analyzed for their microbial composition.


2020 ◽  
Vol 96 (4) ◽  
Author(s):  
César Ruiz ◽  
Marcela Villegas-Plazas ◽  
Olivier P Thomas ◽  
Howard Junca ◽  
Thierry Pérez

ABSTRACT The recent description of the polychromatic sponge Plakina kanaky revealed original microsymbionts, with some morphotypes recorded for the first time in Homoscleromorpha and others never before observed in other sponge groups. Illumina 16S amplicon sequencing was used to characterize this microbial community by comparing contents of seven specimens of this Plakinidae with five other sponge species: one Homoscleromopha of the Oscarellidae family and four Demospongiae. A total of 256 458 sequences of the hypervariable V5-V6 region of the 16S rRNA gene were clustered into 2,829 OTUs at 97% similarity, with Proteobacteria, Poribacteria and Chloroflexi being the most abundant phyla. The Plakina kanaky specific community appeared to be mainly composed by five OTUs representing about 10% of the total microbiome. Among these, the filamentous bacterium Candidatus Entotheonella, which was among the dominant morphotypes previously observed in the mesohyl and the larvae of P. kanaky, was detected in all studied specimens. However, other original and dominant morphotypes could not be assigned to a known prokaryotic taxon. This cave dwelling sponge species harbors a distinctive microbiome composition of potential taxonomic and metabolic novelties that may be linked to its ecological success in such extreme environments.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1184
Author(s):  
Wendy Marin-Gómez ◽  
Mᵃ José Grande ◽  
Rubén Pérez-Pulido ◽  
Antonio Galvez ◽  
Rosario Lucas

Breast milk from a single mother was collected during a 28-week lactation period. Bacterial diversity was studied by amplicon sequencing analysis of the V3-V4 variable region of the 16S rRNA gene. Firmicutes and Proteobacteria were the main phyla detected in the milk samples, followed by Actinobacteria and Bacteroidetes. The proportion of Firmicutes to Proteobacteria changed considerably depending on the sampling week. A total of 411 genera or higher taxons were detected in the set of samples. Genus Streptococcus was detected during the 28-week sampling period, at relative abundances between 2.0% and 68.8%, and it was the most abundant group in 14 of the samples. Carnobacterium and Lactobacillus had low relative abundances. At the genus level, bacterial diversity changed considerably at certain weeks within the studied period. The weeks or periods with lowest relative abundance of Streptococcus had more diverse bacterial compositions including genera belonging to Proteobacteria that were poorly represented in the rest of the samples.


2021 ◽  
Vol 368 (17) ◽  
Author(s):  
Zachary Mays ◽  
Amelia Hunter ◽  
Lindsay Glass Campbell ◽  
Camila Carlos-Shanley

Abstract The gut microbiome is affected by host intrinsic factors, diet and environment, and strongly linked to host's health. Although fluctuations of microbiome composition are normal, some are due to changes in host environmental conditions. When species are moved into captive environments for conservation, education or rehabilitation, these new conditions can influence a change in gut microbiome composition. Here, we compared the microbiomes of wild and captive Comal Springs riffle beetles (Heterelmis comalensis) by using amplicon sequencing of the 16S rRNA gene. We found that the microbiome of captive beetles was more diverse than wild beetle microbiomes. We identified 24 amplicon sequence variants (ASVs) with relative abundances significantly different between the wild and captive beetles. Many of the ASVs overrepresented in captive beetle microbiomes belong to taxa linked to nitrogen-rich environments. This is one of the first studies comparing the effects of captivity on the microbiome of an endangered insect species. Our findings provide valuable information for future applications in the management of captive populations of H. comalensis.


Sign in / Sign up

Export Citation Format

Share Document