scholarly journals Diversity, Distribution, and Ecology of Fungi in the Seasonal Snow of Antarctica

2019 ◽  
Vol 7 (10) ◽  
pp. 445 ◽  
Author(s):  
Graciéle C.A. de Menezes ◽  
Soraya S. Amorim ◽  
Vívian N. Gonçalves ◽  
Valéria M. Godinho ◽  
Jefferson C. Simões ◽  
...  

We characterized the fungal community found in the winter seasonal snow of the Antarctic Peninsula. From the samples of snow, 234 fungal isolates were obtained and could be assigned to 51 taxa of 26 genera. Eleven yeast species displayed the highest densities; among them, Phenoliferia glacialis showed a broad distribution and was detected at all sites that were sampled. Fungi known to be opportunistic in humans were subjected to antifungal minimal inhibition concentration. Debaryomyces hansenii, Rhodotorula mucilaginosa, Penicillium chrysogenum, Penicillium sp. 3, and Penicillium sp. 4 displayed resistance against the antifungals benomyl and fluconazole. Among them, R. mucilaginosa isolates were able to grow at 37 °C. Our results show that the winter seasonal snow of the Antarctic Peninsula contains a diverse fungal community dominated by cosmopolitan ubiquitous fungal species previously found in tropical, temperate, and polar ecosystems. The high densities of these cosmopolitan fungi suggest that they could be present in the air that arrives at the Antarctic Peninsula by air masses from outside Antarctica. Additionally, we detected environmental fungal isolates that were resistant to agricultural and clinical antifungals and able to grow at 37 °C. Further studies will be needed to characterize the virulence potential of these fungi in humans and animals.

2019 ◽  
Vol 9 (1) ◽  
pp. 78-87
Author(s):  
Monika Laichmanová ◽  
Ivo Sedláček

The aim of this study was to investigate the fungal community associated with fruits and vegetables transported into the Antarctic region and observe qualitative changes of their surface mycobiota after UV-C treatment. This measure is used to prevent the post-harvest diseases of stored fruits and vegetables and reduce the risk of introducing non-native species to the Antarctic environment. In total, 82 strains of filamentous fungi were isolated from the surfaces of 64 pieces of fresh fruits and vegetables before and after their UV-C treatment. They were assigned to the genera Penicillium, Fusarium, Mucor, Cladosporium, and Acremonium. After the UV-C treatment of the examined fruits and vegetables, spores of the genera Fusarium, Cladosporium and Acremonium were not detected, while spores of the genera Penicillium and Mucor were more resistant and stayed viable after the treatment. Penicillium strains prevailed in the examined samples. Their introduction to the Antarctic environment could represent a potential risk for endemic autochthonous organisms.


2021 ◽  
Author(s):  
James Brean ◽  
Manuel Dall’Osto ◽  
Rafel Simó ◽  
Zongbo Shi ◽  
David C. S. Beddows ◽  
...  

2021 ◽  
pp. 1-27
Author(s):  
H. Jay Zwally ◽  
John W. Robbins ◽  
Scott B. Luthcke ◽  
Bryant D. Loomis ◽  
Frédérique Rémy

Abstract GRACE and ICESat Antarctic mass-balance differences are resolved utilizing their dependencies on corrections for changes in mass and volume of the same underlying mantle material forced by ice-loading changes. Modeled gravimetry corrections are 5.22 times altimetry corrections over East Antarctica (EA) and 4.51 times over West Antarctica (WA), with inferred mantle densities 4.75 and 4.11 g cm−3. Derived sensitivities (Sg, Sa) to bedrock motion enable calculation of motion (δB0) needed to equalize GRACE and ICESat mass changes during 2003–08. For EA, δB0 is −2.2 mm a−1 subsidence with mass matching at 150 Gt a−1, inland WA is −3.5 mm a−1 at 66 Gt a−1, and coastal WA is only −0.35 mm a−1 at −95 Gt a−1. WA subsidence is attributed to low mantle viscosity with faster responses to post-LGM deglaciation and to ice growth during Holocene grounding-line readvance. EA subsidence is attributed to Holocene dynamic thickening. With Antarctic Peninsula loss of −26 Gt a−1, the Antarctic total gain is 95 ± 25 Gt a−1 during 2003–08, compared to 144 ± 61 Gt a−1 from ERS1/2 during 1992–2001. Beginning in 2009, large increases in coastal WA dynamic losses overcame long-term EA and inland WA gains bringing Antarctica close to balance at −12 ± 64 Gt a−1 by 2012–16.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 217
Author(s):  
Jiangping Zhu ◽  
Aihong Xie ◽  
Xiang Qin ◽  
Yetang Wang ◽  
Bing Xu ◽  
...  

The European Center for Medium-Range Weather Forecasts (ECMWF) released its latest reanalysis dataset named ERA5 in 2017. To assess the performance of ERA5 in Antarctica, we compare the near-surface temperature data from ERA5 and ERA-Interim with the measured data from 41 weather stations. ERA5 has a strong linear relationship with monthly observations, and the statistical significant correlation coefficients (p < 0.05) are higher than 0.95 at all stations selected. The performance of ERA5 shows regional differences, and the correlations are high in West Antarctica and low in East Antarctica. Compared with ERA5, ERA-Interim has a slightly higher linear relationship with observations in the Antarctic Peninsula. ERA5 agrees well with the temperature observations in austral spring, with significant correlation coefficients higher than 0.90 and bias lower than 0.70 °C. The temperature trend from ERA5 is consistent with that from observations, in which a cooling trend dominates East Antarctica and West Antarctica, while a warming trend exists in the Antarctic Peninsula except during austral summer. Generally, ERA5 can effectively represent the temperature changes in Antarctica and its three subregions. Although ERA5 has bias, ERA5 can play an important role as a powerful tool to explore the climate change in Antarctica with sparse in situ observations.


2021 ◽  
pp. 1-4
Author(s):  
CRISTIAN RODRIGO ◽  
ANDRÉS VARAS-GÓMEZ ◽  
ADRIÁN BUSTAMANTE-MAINO ◽  
EMILIO MENA-HODGES

The variability in sediment concentration and spatial distribution of meltwater discharges from tidewater glaciers can be used to elucidate climatic evolution and glacier behaviour due to the association between sediment yield and glacier retreat (e.g. Domack & McClennen 1996). In an accelerated deglaciation environment, higher sediment concentrations in the water column can change the glacimarine costal dynamics and affect productivity and sea floor ecosystems (e.g. Marín et al. 2013). In the Antarctic Peninsula Region, meltwater or turbid plumes were previously believed to be rare or without an important role in the sedimentary glacimarine environment (e.g. Griffith & Anderson 1989), but recent studies have shown that this is a common phenomenon in subpolar and transition polar climates (Yoo et al. 2015, Rodrigo et al. 2016). In the current climate change scenario, accelerated glacier retreats and mass losses can produce an increasing input of glacial meltwater into the fjord regions, a situation that is not yet well evaluated in the Antarctic Peninsula. In this short note, after in situ observation of an unusual waterfall from the southern side of the main western tidewater glacier (Shoesmith Glacier) of Horseshoe Island (Lystad Bay), Marguerite Bay (Fig. 1), we report high turbidity values associated with plumes from the glacier, whose values were higher than reported data from subpolar/transition polar Antarctic climates.


Sign in / Sign up

Export Citation Format

Share Document