scholarly journals Correction: Wang, B., et al. Pectin Degradation Is an Important Determinant for Alfalfa Silage Fermentation through the Rescheduling of the Bacterial Community. Microorganisms 2020, 8, 488

2020 ◽  
Vol 8 (5) ◽  
pp. 769
Author(s):  
Bing Wang ◽  
Zhiqiang Sun ◽  
Zhu Yu

The authors wish to make the following correction to this paper [...]

2020 ◽  
Vol 8 (4) ◽  
pp. 488 ◽  
Author(s):  
Bing Wang ◽  
Zhiqiang Sun ◽  
Zhu Yu

This study aimed to evaluate the effects of the four kinds of additives on the silage quality and the relevant bacterial community diversity by Illumina HiSeq 16S rRNA sequencing. The four kinds of additives were Lactobacillus plantarum (LP), organic acids including gallic acid (GA) and phenyllactic acid (PA), pectin (PEC), and enzymes including pectinase (PEE) and cellulase (CE). After 30 d of fermentation, the pH value was shown to have the lowest value in the PEE and PEC groups, followed by the PA group, and then in CE and GA groups; the highest value of pH was found in both LP and control groups. The ammonia nitrogen concentration was lower in the PEE group compared to the other groups except for the PA group. In the comparisons among the seven groups, Lactobacillus was higher in the LP group, Paracoccus was higher in the GA group, Weissella was higher in the PA group, Leuconostoc was higher in the PEC group, Bacillus, Aeromonas, and Curvibacter were higher in the PEE group, and Coriobacteriaceae_UCG_002 was higher in the CE group compared to the other groups. This study proposed that the addition of PEC and PEE improved the fermentation quality of alfalfa silage compared to other additives by improving the bacterial community of Leuconostoc, and Bacillus and Aeromonas, respectively. Moreover, the enhanced fermentation quality of alfalfa silage by the supplementation of PEC and PEE might be attributed to other unclassified genera. This study provides an implication that pectin degradation is an important determinant for alfalfa silage fermentation through the rescheduling of bacterial community diversity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qiang Lu ◽  
Zhen Wang ◽  
Duowen Sa ◽  
Meiling Hou ◽  
Gentu Ge ◽  
...  

This study investigated the fermentation quality of alfalfa grown in different salt stress regions in China. Following the production of silage from the natural fermentation of alfalfa, the interplay between the chemical composition, fermentation characteristics, and microbiome was examined to understand the influence of these factors on the fermentation quality of silage. The alfalfa was cultivated under salt stress with the following: (a) soil content of <1%0 (CK); (b) 1–2%0 (LS); (c) 2–3%0 (MS); (d) 3–4%0 (HS). The pH of the silage was high (4.9–5.3), and lactic acid content was high (26.3–51.0 g/kg DM). As the salt stress increases, the NA+ of the silages was higher (2.2–5.4 g/kg DM). The bacterial alpha diversities of the alfalfa silages were distinct. There was a predominance of desirable genera including Lactococcus and Lactobacillus in silage produced from alfalfa under salt stress, and this led to better fermentation quality. The chemical composition and fermentation characteristics of the silage were closely correlated with the composition of the bacterial community. Furthermore, NA+ was found to significantly influence the microbiome of the silage. The results confirmed that salt stress has a great impact on the quality and bacterial community of fresh alfalfa and silage. The salt stress and plant ions were thus most responsible for their different fermentation modes in alfalfa silage. The results of the study indicate that exogenous epiphytic microbiota of alfalfa under salt stress could be used as a potential bioresource to improve the fermentation quality.


2021 ◽  
Vol 9 (6) ◽  
pp. 1225
Author(s):  
Shanshan Zhao ◽  
Fengyuan Yang ◽  
Yuan Wang ◽  
Xiaomiao Fan ◽  
Changsong Feng ◽  
...  

The aim of this study was to gain deeper insights into the dynamics of fermentation parameters and the bacterial community during the ensiling of high-moisture alfalfa. A commercial lactic acid bacteria (YX) inoculant was used as an additive. After 15 and 30 days of ensiling, the control silage (CK) exhibited a high pH and a high concentration of ammoniacal nitrogen (NH3-N); Enterobacter and Hafnia-Obesumbacterium were the dominant genera. At 60 d, the pH value and the concentration of NH3-N in CK silage increased compared with 15 and 30 d, propionic acid and butyric acid (BA) were detected, and Garciella had the highest abundance in the bacterial community. Compared with CK silage, inoculation of YX significantly promoted lactic acid and acetic acid accumulation and reduced pH and BA formation, did not significantly reduce the concentration of NH3-N except at 60 d, and significantly promoted the abundance of Lactobacillus and decreased the abundance of Garciella and Anaerosporobacter, but did not significantly inhibit the growth of Enterobacter and Hafnia-Obesumbacterium. In conclusion, high-moisture alfalfa naturally ensiled is prone to rot. Adding YX can delay the process of silage spoilage by inhibiting the growth of undesirable microorganisms to a certain extent.


2001 ◽  
Vol 81 (4) ◽  
pp. 685-692 ◽  
Author(s):  
G. F. Tremblay ◽  
G. Bélanger ◽  
K. B. McRae ◽  
R. Michaud

During silage fermentation, proteolysis reduces the nutritional value of N, particularly in alfalfa. This study evaluated the proteolysis of 27 alfalfa cultivars seeded in triplicate in 2 consecutive years. Forage from each plot was wilted to a targeted dry matter (DM) content of 250 g kg–1 and ensiled in laboratory silos. Minisilos were made with spring growth and summer regrowth in the first year of production for the first seeding, and with the first 2 yr of production for the second seeding, giving 3 harvest years altogether. Concentrations of NPN, NH3, FAA, DM, TN, and pH were measured in silages, whereas RUP concentration was evaluated in forages. Low NPN concentration indicates low proteolysis during silage fermentation. Spring growth and summer regrowth were analyzed separately by ANOVA as a completely randomized block design replicated over 3 harvest years. A principal component analysis was then performed on the ANOVA means. Silage DM was used as covariate when it was deemed appropriate. There was a significant variation among cultivars for NPN concentration in silages made of summer regrowth; it varied from 612 to 717 g kg–1 of TN. Concentration of NPN was significantly lower for cultivars WL 225, Rangelander, Iroquois, and WL 222, and higher for cultivars Oneida VR, Arrow, Vernal, Spredor 2, and Armor. Oneida VR and Rangelander had respectively high and low silage NPN concentration in both spring growth and summer regrowth. From cultivars with low silage NPN concentration, Rangelander was the only one with high forage RUP concentration in both spring growth and summer regrowth; proteins in this cultivar would be more resistant to microbial degradation during ensiling and in the rumen. Key words: Non protein nitrogen; proteolysis; alfalfa silage; cultivars


2021 ◽  
Author(s):  
Qiming Cheng ◽  
Liangyin Chen ◽  
Yulian Chen ◽  
Ping Li ◽  
Chao Chen

Abstract Background: Lactic acid bacteria have been proposed for the control of undesirable fermentation and subsequently aerobic deterioration due to their ability to produce antimicrobial metabolites in silage mass. To investigate the effect of specific LAB on silage fermentation characteristics and bacterial community composition of oat in cold region, silages were treated without additives (CK) or with three LAB strains (LB, Lactobacillus buchneri; nLP, low temperature tolerant Lactobacillus planrtarum; pLP, phenyllactic acid-producing Lactobacillus plantarum), and then stored at ambient temperature (< 20 ℃) for 30, 60 and 90 days. Results: Compared with CK, inoculation of LAB decreased final pH value, butyric acid content, ammonia-N of total N and dry matter loss of silage. Treatments with nLP and pLP increased (P < 0.05) lactic acid content, whereas LB increased (P < 0.05) acetic acid content of silage. Lactobacillus and Leuconstoc dominated in the silages with relative abundance of 68.29~96.63%. A prolonged storage period enhanced growth of Leuconstoc in pLP treated silage. In addition, pLP increased (P < 0.05) aerobic stability of silage as compared with nLP. Conclusions: In conclusion, inoculation of LAB improved silage fermentation and/or delayed aerobic deterioration by shifting bacterial community composition during ensiling. Phenyllactic acid-producing Lactobacillus plantarum as an inoculant exhibited potential for high quality silage production.


2021 ◽  
Author(s):  
Duowen Sa ◽  
Qiang Lu ◽  
Gentu Ge ◽  
Lin Sun ◽  
Yushan Jia

Abstract Background: The objective of this study was to evaluate the chemical compositions and microbial communities of salt-tolerant alfalfa silage. Salt-tolerant alfalfa was ensiled with no additive control, and cellulase for 30 and 60 to 90 days. In this study, the dry matter (DM) content of the raw material was 29.9% DM, and the crude protein (CP) content of the alfalfa was 21.9% CP. Results: After 30 days of fermentation, the DM content with the cellulase treatment was reduced by 3.6%, and the CP content was reduced by 12.7%. After 60 days of fermentation, compared with alfalfa raw material, the DM content in the control group (CK) was reduced by 1%, the CP content was reduced by 9.5%, and the WSC (water-soluble carbohydrates) content was reduced by 22.6%. With the cellulase, the lactic acid content of the 30- and 60-day silages was 2.66% DM and 3.48% DM. The content of Firmicutes in salinized alfalfa raw material was less than 0.1% of the total bacterial content. Before and after ensiling, the microbes had similar composition at the phylum level, and were composed of Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria. The abundance of Pantoea was dominant in fresh alfalfa. In the absence of additives, after 30 days and 60 days of silage, the dominant lactic acid bacteria species became Lactococcus and Enterococcus. Conclusions: The results showed that LAB (Lactobacillus, Lactococcus, Enterococcus, and Pediococcus) played a major role in the fermentation of saline alfalfa silage. It also can better preserve the nutrients of saline alfalfa silage. The fermentation time would also change the microbial community of silage fermentation.


2020 ◽  
Vol 367 (8) ◽  
Author(s):  
Mingli Zheng ◽  
Dongze Niu ◽  
Di Jiang ◽  
Rongrong Li ◽  
Lin Meng ◽  
...  

ABSTRACT The clostridial fermentation caused by the outgrowth of Clostridia was mainly responsible for the silage anaerobic deterioration. Our previous results showed that Clostridium perfringens dominated the clostridial community in poor-fermented alfalfa silage. This study was conducted to further examine the role of C. perfringens in silage anaerobic deterioration through fermentation products and the microbial community analyses. Direct-cut alfalfa was ensiled with C. perfringens contamination (CKC) or with the addition of Lactobacillus plantarum, sucrose and C. perfringens (LSC). Contamination with C. perfringens enhanced the clostridial fermentation in CKC silage, as indicated by high contents of butyric acid, ammonia nitrogen and Clostridia, while LSC silage was well preserved. The genera Bifidobacterium, Garciella and Clostridium dominated the bacterial community in CKC silage, while predominate genus was replaced by Lactobacillus in LSC silage. The clostridial community in CKC silage was dominated by Garciella sp. (26.9 to 58.1%) and C. tyrobutyricum (24.4 to 48.6%), while the relative abundance of C. perfringens was below 5.0%. Therefore, the effect of Clostridia contamination on ensiling fermentation was dependent on the ensilability of the silage material. Garciella sp. and C. tyrobutyricum, rather than C. perfringens, played dominant role in the clostridial fermentation in CKC silage.


Sign in / Sign up

Export Citation Format

Share Document