scholarly journals Use of Exopolysaccharide-Synthesizing Lactic Acid Bacteria and Fat Replacers for Manufacturing Reduced-Fat Burrata Cheese: Microbiological Aspects and Sensory Evaluation

2020 ◽  
Vol 8 (10) ◽  
pp. 1618
Author(s):  
Giuseppe Costantino ◽  
Maria Calasso ◽  
Fabio Minervini ◽  
Maria De Angelis

This study aimed to set-up a biotechnological protocol for manufacturing a reduced-fat Burrata cheese using semi-skimmed milk and reduced-fat cream, in different combinations with exopolysaccharides-synthesizing bacterial starters (Streptococcus thermophilus, E1, or Lactococcus lactis subsp. lactis and Lc. lactis subsp. cremoris, E2) and carrageenan or xanthan. Eight variants of reduced-fat cheese (fat concentration 34–51% lower than traditional full-fat Burrata cheese, used as the control) were obtained using: (i) semi-skimmed milk and reduced-fat cream alone (RC) or in combination with (ii) xanthan (RCX), (iii) carrageenan (RCC), (iv) starter E1 (RCE1), (v) starter E2 (RCE2), (vi) both starters (RCE1-2), (vii) E1 and xanthan (RCXE1), or E1 and carrageenan (RCCE1). Post-acidification occurred for the RCC, RCX, and RCE2 Burrata cheeses, due to the higher number of mesophilic cocci found in these cheeses after 16 days of storage. Overall, mesophilic and thermophilic cocci, although showing cheese variant-depending dynamics, were dominant microbial groups, flanked by Pseudomonas sp. during storage. Lactobacilli, increasing during storage, represented another dominant microbial group. The panel test gave highest scores to RCE1-2 and RCXE1 cheeses, even after 16 days of storage. The 16S-targeted metagenomic analysis revealed that a core microbiota (S. thermophilus, Streptococcus lutetiensis, Lc. lactis, Lactococcus sp., Leuconostoc lactis, Lactobacillus delbrueckii, and Pseudomonas sp.), characterized the Burrata cheeses. A consumer test, based on 105 people, showed that more than 50% of consumers did not distinguish the traditional full-fat from the RCXE1 reduced-fat Burrata cheese.

2012 ◽  
Vol 3 (1) ◽  
pp. 23-32 ◽  
Author(s):  
A. Do Carmo ◽  
M. De Oliveira ◽  
D. Da Silva ◽  
S. Castro ◽  
A. Borges ◽  
...  

There are three main reasons for using lactic acid bacteria (LAB) as starter cultures in industrial food fermentation processes: food preservation due to lactic acid production; flavour formation due to a range of organic molecules derived from sugar, lipid and protein catabolism; and probiotic properties attributed to some strains of LAB, mainly of lactobacilli. The aim of this study was to identify some genes involved in lactose metabolism of the probiotic Lactobacillus delbrueckii UFV H2b20, and analyse its organic acid production during growth in skimmed milk. The following genes were identified, encoding the respective enzymes: ldh – lactate dehydrogenase, adhE – Ldb1707 acetaldehyde dehydrogenase, and ccpA-pepR1 – catabolite control protein A. It was observed that L. delbrueckii UFV H2b20 cultivated in different media has the unexpected ability to catabolyse galactose, and to produce high amounts of succinic acid, which was absent in the beginning, raising doubts about the subspecies in question. The phylogenetic analyses showed that this strain can be compared physiologically to L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis, which are able to degrade lactose and can grow in milk. L. delbrueckii UFV H2b20 sequences have grouped with L. delbrueckii subsp. bulgaricus ATCC 11842 and L. delbrueckii subsp. bulgaricus ATCC BAA-365, strengthening the classification of this probiotic strain in the NCFM group proposed by a previous study. Additionally, L. delbrueckii UFV H2b20 presented an evolutionary pattern closer to that of probiotic Lactobacillus acidophilus NCFM, corroborating the suggestion that this strain might be considered as a new and unusual subspecies among L. delbrueckii subspecies, the first one identified as a probiotic. In addition, its unusual ability to metabolise galactose, which was significantly consumed in the fermentation medium, might be exploited to produce low-browning probiotic Mozzarella cheeses, a desirable property for pizza cheeses.


2018 ◽  
pp. 677-686 ◽  
Author(s):  
Ertan Ermiş ◽  
Rabia Güneş ◽  
İnci Zent ◽  
Muhammed Yusuf Çağlar ◽  
Mustafa Tahsin Yılmaz

2019 ◽  
Vol 13 (3) ◽  
pp. 166-174
Author(s):  
В.І. Жилюк ◽  
Г.О. Ушакова ◽  
Ю.В. Харченко ◽  
Д. В. Муравйова

Мета дослідження – вивчення впливу S-аденозил-L-метіоніну, пре/пробіотиків та їхнього сумісного застосування на мнестичні процеси та рівень білків клітинної адгезії (NCAM) у гіпокампі щурів за умов тривалого введення рифампіцину та ізоніазиду. Дослідження проводили на 68 білих щурах-самцях лінії Wistar масою 180–220 г. Експериментальну модель токсичного медикаментозно-індукованого ураження печінки (МІУП) відтворювали шляхом повторних внутрішньошлункових (в/ш) введень ізоніазиду та рифампіцину у дозах 50 мг/кг і 86 мг/кг маси тіла відповідно протягом 28 діб. Тварин було розподілено на п’ять груп (n = 8 у кожній). І – інтактна, ІІ – контроль (МІУП). Щурам ІІІ групи протягом останніх 14 діб експерименту за 1 год до введення туберкулостатиків внутрішньом’язово вводили S-аденозил-L-метіонін у дозі 35 мг/кг. Щури IV групи в/ш отримували комбіновану терапію, що поєднувала пребіотик Лактулозу в дозі 2680 мг/кг і пробіотик, що містить 4 млрд активних клітин (КУО): Lactobacillus acidophilus, Lactobacillus rhamnosus, Streptococcus thermophilus, Lactobacillus delbrueckii subsp. Bulgaricus у дозі 1 КУО/кг. Тваринам V групи проводили потрійну комбіновану фармакотерапію з усіма препаратами, які застосовували в ІІІ і ІV групах у відповідних дозах. Ноотропну активність оцінювали в тесті умовної реакції пасивного уникнення (УРПУ) за умов введення скополаміну. Для оцінки впливу скополаміну на процеси навчання використані значення показників груп тварин (інтактні, n = 10; МІУП, n = 18), які попередньо не отримували цей препарат. Кількісний уміст NCAM визначали за допомогою інгібіторного методу імуноферментного аналізу з використанням моноспецифічних антитіл щодо NCAM (Аbcam, Англія) і відповідного очищеного білка як стандарту (Аbnovo, США) у цитозольній фракції гомогенату гіпокампа. Отриманий цифровий матеріал обробляли методом варіаційної статистики за допомогою програми статистичного аналізу StatPlus, AnalystSoft Inc. Версія 6 (http://www.analystsoft.com/ru/). Результати експериментів свідчать про те, що курсове введення S-аденозил-L-метіоніну покращувало процеси навчання за умов введення скополаміну, що проявлялося суттєвим збільшенням латентного періоду в 3,14 разу (Р = 0,027) порівняно з групою тварин з МІУП, а число тварин з набутою навичкою складало 62,5 % (Р = 0,007). При цьому за умов введення цього препарату спостерігалося зростання на 38,7 % (Р = 0,004) рівнів цитоплазматичної форми NCAM у гіпокампі, яке ймовірно мало компенсаторний характер. Характерно, що корекція стану мікробіоти кишечника також може чинити позитивний вплив на мнестичні функції за умов тривалого введення туберкулостатиків, однак за своїм ноотропним потенціалом комбінація Лактулоза/Йогурт поступалася S-аденозил-Lметіоніну, хоча рівні NCAM у гіпокампі зростали на 39,6 % (Р = 0,004) порівняно з групою тварин з МІУП. Слід зазначити, що сумісне застосування пребіотика та пробіотика з S-аденозил-L-метіоніном не супроводжувалося підвищенням ноотропної активності. Отримані дані експериментально обґрунтовують застосування насамперед S-аденозил-Lметіоніну, а також пре/пробіотиків як перспективних засобів корекції когнітивних порушень за медикаментозних гепатитів. Необхідні подальші дослідження щодо можливості комбінованого використання зазначених засобів за умов вказаної патології.


2002 ◽  
Vol 47 (2) ◽  
pp. 219-231 ◽  
Author(s):  
Jelena Denin-Djurdjevic ◽  
Ognjen Macej ◽  
Snezana Jovanovic

Skim milk was reconstituted to obtain milk with 8.44% DM, which was standardized with demineralized whey powder (DWP) to obtain milk sample A (9.71% DM) and milk sample B (10.75% DM). Milk samples were heat treated at 85?C/20 min and 90?C/10 min, respectively. Untreated milk was used as control. Milk samples were inoculated with 2.5% of commercial yogurt culture (containing Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in the ratio 1:1) at 43?C. Samples were incubated until pH 4.6 was reached. Samples were immediately cooled to 4?C and held at that temperature until analyses. Samples of acid casein gels were stirred after 1, 7 and 14 days of storage. Measurements of viscosity were done with Brookfield DV-E Viscometer. Spindle No 3 at 30 rpm was used for all samples. Duration of fermentation decreased when DWP was used for standardization of milk dry matter content. Yogurt samples produced from milk heat treated at 85?C/20 min, obtained by stirring of gel 1 day after production had a higher viscosity than sample produced from milk heat treated at 90?C/10 min. On the other hand, samples produced from milk heat treated at 90?C/10 min had a greater viscosity after 7 and 14 days of storage, which indicates a greater hydrophilic properties and a more pronounced swelling of casein micelles.


1996 ◽  
Vol 63 (1) ◽  
pp. 151-158 ◽  
Author(s):  
Hamid B. Ghoddusi ◽  
Richard K. Robinson

SummarySome media available for the isolation and enumeration of starter cultures employed for the manufacture of cheese, yogurt and bio-yogurt were examined. Reddy's medium or a modification of Elliker's medium was found to be most satisfactory forLactococcusspp., while trypticase phytone yeast (TPY) agar with a mixture of antibiotics proved suitable for the discrete enumeration ofBifidobacteriumspp. The inclusion of Prussian blue (PB) in reinforced clostridial medium or tryptone proteose peptone yeast extract (TPPY) agar gave excellent differential counts for the starter bacteria in yogurt even when the culture was imbalanced, while TPPY (PB) agar allowed the visible separation of all four of the organisms that might be found in a typical bio-yogurt, namelyLactobacillus delbrueckiisubsp.bulgaricus, Streptococcus thermophilus, a,Bifidobacteriumsp. andLb. acidophilus. It was noted that variation among different strains of any given species could change the expected reactions, so for quality control purposes the suggested media may need to be modified to cope with the specific cultures in use.


2018 ◽  
Vol 30 (7) ◽  
pp. 319-331 ◽  
Author(s):  
Yuki Usui ◽  
Yasumasa Kimura ◽  
Takeshi Satoh ◽  
Naoki Takemura ◽  
Yasuo Ouchi ◽  
...  

2012 ◽  
Vol 5 (1-2) ◽  
Author(s):  
Milka Stijepić ◽  
Dragica Đurđević-Milošević ◽  
Jovana Glušac

Due to a growing demand for functional fermented dairy foods with improved nutritional qualities, the food processing industry has prompted to cut down on ingredients such as fat, sugar and additives, thereby necessitating some important changes in sensory qualities that influence consumer acceptance of fermented dairy products. Addition of functional ingredients such as whey protein concentrate (WPC) and honey may improve overall quality of yoghurt. It is well known ability of WPC to support formation of whey protein aggregates which highly improve physical properties of yoghurt. Honey may be an ideal sweetener for yoghurt due to its sugar concentration, low pH and a variety of beneficial nutritional properties.The aim of the present study was to examine the effect of WPC (1%), as well as combination of WPC and honey (H: 2% and 4%) on the physical and chemical properties of low fat set-style yoghurt during 21 days of storage at 5°C. Yogurt was prepared from milk (1.5% fat), treated on 95ºC for 10 min and yoghurt culture VIVOLAC DriSet Yogurt 442: 10% Lactobacillus delbrueckii subsp. bulgaricus and 90% Streptococcus thermophilus (Vivolac Culture Corporation, Indiana, USA), applying standard manufacturing procedure. It was concluded that the addition of honey in combination with WPC improved quality of produced yoghurt. On the other side, as honey presents a higher nutrition value ingredient, the addition of different percent of honey in combination with WPC could present a novel formulation for functional fermented dairy food.


2018 ◽  
Vol 9 (2) ◽  
pp. 102-105
Author(s):  
Shiekh Ajaz Rasool ◽  
Fehmida Mirza ◽  
Hera Waheed ◽  
Muhammad Munir

Probiotics (Pro-life live entities) provide the health and well being with multitude of beneficial effects on humans and animals (and relief against varied disorders). Probiotics may manage lactose intolerance, elevate immune profile, prevent colorectal cancers, reduce cholesterol and triglyceride profile, lowering blood pressure and inflammatory process. They also prevent osteoporosis, allergic reactions and help suppress H. pylori infections and other pathological manifestations. Microbial metabolites (even in the absence of live entities) may exert (analogous) effects on signal pathways and barrier functions. Such substances are referred as ‘Postbiotics’ (the plain metabolic byproduct of probiotics, bioactive manifestations in the host). Generally, postbiotics include secondary metabolites such as bacteriocins, organic acids, ethanol, acetaldehyde, reactive oxygen species (ROS). Such metabolites are inhibitory against pathogenic strains of different broad spectrum drug resistant microbial groups (MDR, XDR etc). Postbiotics are safe, apathogenic which may resist hydrolysis by enzymes of mammalian origin. It has been described that micro-RNA profile of human milk may exert the inhibitory effects of probiotics. Our research group has been investigating the merits of mammalian milk as a viable source of probiotics that secrete bioactive peptides against MDR/biofilm producing strains (ref. Streptococcus thermophilus and Enterococcus faecalis, a GIT probiont). These peptides are in the range of 10-16KDa molecular mass (sensitive to proteolytic enzymes as well). Genes coding for these peptides are plasmid associated. Mode of action of these peptides is bacteriostatic. Molecular identification of these Probiotic strains is being followed. This, on the whole marks an emphasis on biological operation of novel strains of Probiotic and their applications in medico-clinical areas to improve the human health and wellness.


Sign in / Sign up

Export Citation Format

Share Document