scholarly journals The Limits and Avoidance of Biases in Metagenomic Analyses of Human Fecal Microbiota

2020 ◽  
Vol 8 (12) ◽  
pp. 1954
Author(s):  
Emma Bergsten ◽  
Denis Mestivier ◽  
Iradj Sobhani

An increasing body of evidence highlights the role of fecal microbiota in various human diseases. However, more than two-thirds of fecal bacteria cannot be cultivated by routine laboratory techniques. Thus, physicians and scientists use DNA sequencing and statistical tools to identify associations between bacterial subgroup abundances and disease. However, discrepancies between studies weaken these results. In the present study, we focus on biases that might account for these discrepancies. First, three different DNA extraction methods (G’NOME, QIAGEN, and PROMEGA) were compared with regard to their efficiency, i.e., the quality and quantity of DNA recovered from feces of 10 healthy volunteers. Then, the impact of the DNA extraction method on the bacteria identification and quantification was evaluated using our published cohort of sample subjected to both 16S rRNA sequencing and whole metagenome sequencing (WMS). WMS taxonomical assignation employed the universal marker genes profiler mOTU-v2, which is considered the gold standard. The three standard pipelines for 16S RNA analysis (MALT and MEGAN6, QIIME1, and DADA2) were applied for comparison. Taken together, our results indicate that the G’NOME-based method was optimal in terms of quantity and quality of DNA extracts. 16S rRNA sequence-based identification of abundant bacteria genera showed acceptable congruence with WMS sequencing, with the DADA2 pipeline yielding the highest congruent levels. However, for low abundance genera (<0.5% of the total abundance) two pipelines and/or validation by quantitative polymerase chain reaction (qPCR) or WMS are required. Hence, 16S rRNA sequencing for bacteria identification and quantification in clinical and translational studies should be limited to diagnostic purposes in well-characterized and abundant genera. Additional techniques are warranted for low abundant genera, such as WMS, qPCR, or the use of two bio-informatics pipelines.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Marina Santiago ◽  
Scott W. Olesen

Abstract Objectives Universal stool banks provide stool to physicians for use in treating recurrent Clostridioides difficile infection via fecal microbiota transplantation. Stool donors providing the material are rigorously screened for diseases and disorders with a potential microbiome etiology, and they are likely healthier than the controls in most microbiome datasets. 16S rRNA sequencing was performed on samples from a selection of stool donors at a large stool bank, OpenBiome, to characterize their gut microbial community and to compare samples across different timepoints and sequencing runs. Data description 16S rRNA sequencing was performed on 200 samples derived from 170 unique stool donations from 86 unique donors. Samples were sequenced on 11 different sequencing runs. We are making this data available because rigorously screened, likely very healthy stool donors may be useful for characterizing and understanding microbial community differences across different populations and will help shed light into the how the microbiome community promotes health and disease.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2121-2121 ◽  
Author(s):  
Roni Shouval ◽  
Ilan Youngster ◽  
Mika Geva ◽  
Adi Eshel ◽  
Ivetta Danylesko ◽  
...  

Abstract Background: Steroid-resistant (SR) intestinal acute graft versus host disease (aGVHD) is a devastating complication of allogeneic hematopoietic stem cell transplantation. Preliminary reports suggest that fecal microbiota transplantation (FMT) administered through a nasogastric tube or colonoscopy may be an effective treatment. We report the results of a single-arm pilot study (NCT 03214289) using FMT in capsules to treat SR or steroid dependent (SD) intestinal aGVHD. Methods: The primary outcome was the occurrence of severe adverse events (SAEs) at 28 days post last FMT course. Secondary outcomes included GVHD response. Complete response (CR) was defined as resolution of gastrointestinal symptoms or reduction of steroid dose to 5 mg of prednisone. Partial response was defined as a decrease in severity of GVHD by at least one stage or a ≥40% reduction in steroid dose. Patients were eligible if they had SR or SD gut aGVHD without active infection or neutropenia. Per-protocol, participants received a course of 30 frozen capsules of fecal matter over two consecutive days. FMT courses could be repeated from the same or a different donor, at the treating physician's discretion. Capsules are produced from healthy unrelated donors who underwent vigorous screening. They are taken orally and are flavorless and odor-free. To characterize the impact of the FMT on the gut microbiota, stool samples of recipients were serially collected and underwent 16s rRNA sequencing. Results: To date, we have enrolled 7 patients with intestinal aGVHD (6 SR, 1 SD) (Table). The median dose of methylprednisolone (MP) was 1 mg/kg (interquartile range [IQR] 0.8-1.3 mg/kg). FMT was administered at a median of 39 days (IQR 21-58 days) from aGVHD diagnosis. A total of 15 courses of FMT were given. Patients received a range of 1-3 FMT courses (median 2). The capsules were well tolerated. Patient #1 developed Enterococcus Faecium bacteremia 2 days following the second FMT. To track the source of bacteremia, we performed targeted metagenomic sequencing. The enterococcus strain from the blood culture was identified in the recipient's pre-FMT stool sample but not in the FMT inoculum (i.e., capsule), confirming that the bacteremia was not an FMT complication. Similarly, patient #6 developed Pseudomonas aeruginosa bacteremia 3 days after the 2nd FMT. 16s rRNA sequencing of the donor capsule failed to demonstrate Pseudomonas taxa. No other SAEs suspected to be related to the FMT were observed. Two patients achieved a CR with complete resolution of GVHD symptoms. Patient #6 had a partial improvement following the 1st FMT, with a reduction of MP from 2 mg/kg to 1.3 mg/kg. Three days after the 2nd FMT, she developed fatal pseudomonas bacteremia, not related to the FMT as detailed above. At last follow-up (median 61 days, IQR 40-99), 3/7 patients were alive. Three patients died from consequences of active GVHD, while one patients who responded to FMT and was free of GVHD, succumbed to an invasive Aspergillus infection of the brain. 16s rRNA sequencing of stool samples revealed bacterial domination (i.e., occupation of at least 40% of the microbiota by a single predominating taxon) of Escherichia(E) coli in four patients before FMT, with a major reduction following therapy. FMT was associated with the introduction of new bacteria and an increase in bacterial diversity in the recipient's stool (Figure). Conclusions: We demonstrate for the first time the utility of fecal microbiota transplantation in orally administered capsules for the treatment of severe intestinal acute GVHD. The capsules were well tolerated and safe. Metagenomic sequencing proved that a bacterial infection following FMT was not related to the procedure. Sequencing of the stool sample revealed bacterial domination with E.coli in 4/7 patients prior to the first FMT. Following FMT, bacterial diversity increased. Finally, 2/7 patients attained a complete response following therapy, suggesting a potential role of FMT in patient management. Figure. (A) Heatmap of operational taxonomics units (OTU). Each column marks a sequenced stool sample at a specific time point and rows individual taxas. The color code indicates relative abundance. Dotted lines represent an FMT course. Before FMT all patients, aside from patient #6, had markedly reduced diversity, with enrichment of OTUs following treatment. (B). Change of bacterial diversity, measured by the Shanon diversity index before and after FMTs. Figure. Figure. Disclosures No relevant conflicts of interest to declare.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jinglei Si ◽  
Lingli Feng ◽  
Jiuyu Gao ◽  
Ye Huang ◽  
Guangjie Zhang ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 807
Author(s):  
Ning Chin ◽  
Gema Méndez-Lagares ◽  
Diana H. Taft ◽  
Victoria Laleau ◽  
Hung Kieu ◽  
...  

Breastfeeding is the gold standard for feeding infants because of its long-term benefits to health and development, but most infants in the United States are not exclusively breastfed in the first six months. We enrolled 24 infants who were either exclusively breastfed or supplemented with formula by the age of one month. We collected diet information, stool samples for evaluation of microbiotas by 16S rRNA sequencing, and blood samples for assessment of immune development by flow cytometry from birth to 6 months of age. We further typed the Bifidobacterium strains in stool samples whose 16S rRNA sequencing showed the presence of Bifidobacteriaceae. Supplementation with formula during breastfeeding transiently changed the composition of the gut microbiome, but the impact dissipated by six months of age. For example, Bifidobacterium longum, a bacterial species highly correlated with human milk consumption, was found to be significantly different only at 1 month of age but not at later time points. No immunologic differences were found to be associated with supplementation, including the development of T-cell subsets, B cells, or monocytes. These data suggest that early formula supplementation, given in addition to breast milk, has minimal lasting impact on the gut microbiome or immunity.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Anirudha R. Dixit ◽  
Christina L. M. Khodadad ◽  
Mary E. Hummerick ◽  
Cory J. Spern ◽  
LaShelle E. Spencer ◽  
...  

Abstract Background Seed sanitization via chemical processes removes/reduces microbes from the external surfaces of the seed and thereby could have an impact on the plants’ health or productivity. To determine the impact of seed sanitization on the plants’ microbiome and pathogen persistence, sanitized and unsanitized seeds from two leafy green crops, red Romaine lettuce (Lactuca sativa cv. ‘Outredgeous’) and mizuna mustard (Brassica rapa var. japonica) were exposed to Escherichia coli and grown in controlled environment growth chambers simulating environmental conditions aboard the International Space Station. Plants were harvested at four intervals from 7 days post-germination to maturity. The bacterial communities of leaf and root were investigated using the 16S rRNA sequencing while quantitative polymerase chain reaction (qPCR) and heterotrophic plate counts were used to reveal the persistence of E. coli. Result E. coli was detectable for longer periods of time in plants from sanitized versus unsanitized seeds and was identified in root tissue more frequently than in leaf tissue. 16S rRNA sequencing showed dynamic changes in the abundance of members of the phylum Proteobacteria, Firmicutes, and Bacteroidetes in leaf and root samples of both leafy crops. We observed minimal changes in the microbial diversity of lettuce or mizuna leaf tissue with time or between sanitized and unsanitized seeds. Beta-diversity showed that time had more of an influence on all samples versus the E. coli treatment. Conclusion Our results indicated that the seed surface sanitization, a current requirement for sending seeds to space, could influence the microbiome. Insight into the changes in the crop microbiomes could lead to healthier plants and safer food supplementation.


2012 ◽  
Vol 2 (2) ◽  
pp. 111
Author(s):  
Sung-Hee Oh ◽  
Min-Chul Cho ◽  
Jae-Wook Kim ◽  
Dongheui An ◽  
Mun-Hui Jeong ◽  
...  

Author(s):  
Isabel Abellan-Schneyder ◽  
Andrea Janina Bayer ◽  
Sandra Reitmeier ◽  
Klaus Neuhaus

Author(s):  
Andrea Janina Bayer ◽  
Sandra Reitmeier ◽  
Klaus Neuhaus ◽  
Isabel Abellan-Schneyder

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Haleh Forouhandeh ◽  
Sepideh Zununi Vahed ◽  
Hossein Ahangari ◽  
Vahideh Tarhriz ◽  
Mohammad Saeid Hejazi

Abstract Lighvan cheese (Lighvan panir) is among the most famous traditional cheese in Iran for its desired aroma and flavor. Undoubtedly, the lactic acid bacteria especially the genus Lactobacillus are the critical factors in developing the aroma, flavor, and texture in Lighvan cheese. In this study, the Lactobacillus population of the main Lighvan cheese was investigated. The Lactobacillus of the main Lighvan cheese was isolated using specific culture methods according to previously published Guidelines. Then, the phylogenetic features were investigated and the phenotypic characteristics were examined using specific culture methods. Twenty-eight Gram-positive bacterial species were identified belonged to the genus Lactobacillus. According to the same sequences as each other, three groups (A, B, and C) of isolates were categorized with a high degree of similarity to L. fermentum (100%) and L. casei group (L. casei, L. paracasei, and L. rhamnosus) (99.0 to 100%). Random amplified polymorphic DNA (RAPD) fingerprint analysis manifested the presence of three clusters that were dominant in traditional Lighvan cheese. Cluster І was divided into 4 sub-clusters. By the result of carbohydrate fermentation pattern and 16S rRNA sequencing, isolates were identified as L. rhamnosus. The isolates in clusters II and III represented L. paracasei and L. fermentum, respectively as they were identified by 16S rRNA sequencing and fermented carbohydrate patterns. Our result indicated that the specific aroma and flavor of traditional Lighvan cheese can be related to its Lactobacillus population including L. fermentum, L. casei, L. paracasei, and L. rhamnosus. Graphical abstract


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Leena Malayil ◽  
Suhana Chattopadhyay ◽  
Emmanuel F. Mongodin ◽  
Amy R. Sapkota

AbstractNontraditional irrigation water sources (e.g., recycled water, brackish water) may harbor human pathogens, including Vibrio spp., that could be present in a viable-but-nonculturable (VBNC) state, stymieing current culture-based detection methods. To overcome this challenge, we coupled 5-bromo-2′-deoxyuridine (BrdU) labeling, enrichment techniques, and 16S rRNA sequencing to identify metabolically-active Vibrio spp. in nontraditional irrigation water (recycled water, pond water, non-tidal freshwater, and tidal brackish water). Our coupled BrdU-labeling and sequencing approach revealed the presence of metabolically-active Vibrio spp. at all sampling sites. Whereas, the culture-based method only detected vibrios at three of the four sites. We observed the presence of V. cholerae, V. vulnificus, and V. parahaemolyticus using both methods, while V. aesturianus and V. shilonii were detected only through our labeling/sequencing approach. Multiple other pathogens of concern to human health were also identified through our labeling/sequencing approach including P. shigelloides, B. cereus and E. cloacae. Most importantly, 16S rRNA sequencing of BrdU-labeled samples resulted in Vibrio spp. detection even when our culture-based methods resulted in negative detection. This suggests that our novel approach can effectively detect metabolically-active Vibrio spp. that may have been present in a VBNC state, refining our understanding of the prevalence of vibrios in nontraditional irrigation waters.


Sign in / Sign up

Export Citation Format

Share Document