scholarly journals HrpL Regulon of Bacterial Pathogen of Woody Host Pseudomonas savastanoi pv. savastanoi NCPPB 3335

2021 ◽  
Vol 9 (7) ◽  
pp. 1447
Author(s):  
Alba Moreno-Pérez ◽  
Cayo Ramos ◽  
Luis Rodríguez-Moreno

The Pseudomonas savastanoi species comprises a group of phytopathogenic bacteria that cause symptoms of disease in woody hosts. This is mediated by the rapid activation of a pool of virulence factors that suppress host defences and hijack the host’s metabolism to the pathogen’s benefit. The hrpL gene encodes an essential transcriptional regulator of virulence functions, including the type III secretion system (T3SS), in pathogenic bacteria. Here, we analyzed the contribution of HrpL to the virulence of four pathovars (pv.) of P. savastanoi isolated from different woody hosts (oleander, ash, broom, and dipladenia) and characterized the HrpL regulon of P. savastanoi pv. savastanoi NCPPB 3335 using two approaches: whole transcriptome sequencing (RNA-seq) and the bioinformatic prediction of candidate genes containing an hrp-box. Pathogenicity tests carried out for the P. savastanoi pvs. showed that HrpL was essential for symptom development in both non-host and host plants. The RNA-seq analysis of the HrpL regulon in P. savastanoi revealed a total of 53 deregulated genes, 49 of which were downregulated in the ΔhrpL mutant. Bioinformatic prediction resulted in the identification of 50 putative genes containing an hrp-box, 16 of which were shared with genes previously identified by RNA-seq. Although most of the genes regulated by HrpL belonged to the T3SS, we also identified some genes regulated by HrpL that could encode potential virulence factors in P. savastanoi.

Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 972
Author(s):  
Liang Liu ◽  
Qiang Zhang ◽  
Zhongmin Xu ◽  
Bo Chen ◽  
Anding Zhang ◽  
...  

Streptococcus suis (S.suis) is an important zoonotic pathogen that causes many severe diseases in pigs and humans. Virulence-related transcriptional regulators have been widely reported in pathogenic microorganisms, but only a few have been identified in S.suis. Our aim was to screen virulence-related transcriptional regulators in S.suis. A total of 89 such genes were predicted in the S.suis genome, of which 22 were up-regulated and 18 were down-regulated during S.suis infection in mice. To evaluate the roles of these differentially expressed factors in S.suis virulence, deletion mutants were constructed, and 10 mutants were successfully obtained. Among these genes, the deletion of comR, sitR, or sxvR caused significantly decreased virulence in mice, compared to that with the wild-type strain. Moreover, the survival of ΔcomR, ΔsitR, and ΔsxvR mutant strains in blood was significantly reduced both in vitro and in vivo. Furthermore, their pro-inflammatory abilities were also obviously decreased in vivo. The regulatory mechanisms of comR, sitR, and sxvR were then analyzed by whole transcriptome RNA sequencing (RNA-Seq). Results indicated that the absence of comR induced the down-regulation of 17 virulence factors or virulence-related factors, including genes involved in the synthesis of capsules, oxidative stress tolerance, immune evasion, and cell division. Furthermore, three and two virulence factors or virulence-related factors were down-regulated upon deletion of sitR and sxvR, respectively. Thus, this study reports the discovery of three virulence-associated transcriptional regulatory factors in S.suis. These factors could ultimately be targeted to control infection caused by these bacteria.


2013 ◽  
Vol 80 (3) ◽  
pp. 959-971 ◽  
Author(s):  
Shaolong Feng ◽  
Tyson P. Eucker ◽  
Mayumi K. Holly ◽  
Michael E. Konkel ◽  
Xiaonan Lu ◽  
...  

ABSTRACTWe present the results of a study using high-throughput whole-transcriptome sequencing (RNA-seq) and vibrational spectroscopy to characterize and fingerprint pathogenic-bacterium injury under conditions of unfavorable stress. Two garlic-derived organosulfur compounds were found to be highly effective antimicrobial compounds againstCronobacter sakazakii, a leading pathogen associated with invasive infection of infants and causing meningitis, necrotizing entercolitis, and bacteremia. RNA-seq shows changes in gene expression patterns and transcriptomic response, while confocal micro-Raman spectroscopy characterizes macromolecular changes in the bacterial cell resulting from this chemical stress. RNA-seq analyses showed that the bacterial response to ajoene differed from the response to diallyl sulfide. Specifically, ajoene caused downregulation of motility-related genes, while diallyl sulfide treatment caused an increased expression of cell wall synthesis genes. Confocal micro-Raman spectroscopy revealed that the two compounds appear to have the same phase I antimicrobial mechanism of binding to thiol-containing proteins/enzymes in bacterial cells generating a disulfide stretching band but different phase II antimicrobial mechanisms, showing alterations in the secondary structures of proteins in two different ways. Diallyl sulfide primarily altered the α-helix and β-sheet, as reflected in changes in amide I, while ajoene altered the structures containing phenylalanine and tyrosine. Bayesian probability analysis validated the ability of principal component analysis to differentiate treated and controlC. sakazakiicells. Scanning electron microscopy confirmed cell injury, showing significant morphological variations in cells following treatments by these two compounds. Findings from this study aid in the development of effective intervention strategies to reduce the risk ofC. sakazakiicontamination in the food production environment and on food contact surfaces, reducing the risks to susceptible consumers.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3768-3768 ◽  
Author(s):  
Grazia Fazio ◽  
Marco Severgnini ◽  
Ingrid Cifola ◽  
Silvia Bungaro ◽  
Andrea Biondi ◽  
...  

Abstract Introduction. Acute Lymphoblastic Leukemia (ALL) is the most frequent type of childhood leukemia. It is a multi-step process, characterized by the expansion of a pre-leukemic clone, accumulating cooperative genetic events required for the full transformation and clinical manifestation. Recently, the technological advances in genome-wide profiling techniques have allowed a better understanding of its molecular basis and heterogeneity. However, incidence and cure rates greatly differ among children, reflecting diverse responses to drug treatment and distinguishing risk groups. This defines the need for molecular investigations to better understand leukemia biology and improve risk prediction. Aim. We applied a whole-transcriptome sequencing approach (RNA-seq) to characterize low- (LR) versus high-risk (HR) patients, to identify new genetic lesions associated to different early response to therapy. Methods. Total RNA was extracted from primary leukemic blast samples of 10 pediatric ALL patients (4LR and 6 HR, according to minimal residual disease monitoring), included in the Italian AIEOP-BFM ALL2000 protocol. Genome-wide DNA profiling was performed by Affymetrix Cyto2.7M Arrays, RNA-seq was carried out by Illumina GAIIx platform, and validations were performed using independent approaches, such as RT-PCR and FISH. Fusion events were detected using FusionMap software, followed by a custom computational pipeline for the reduction of false positives and the identification of the most likely fusion candidates. Potential interest for leukemia was explored by testing the occurrence of these candidate fusions and con-joined genes in other RNA-seq datasets from different tumors and normal blood samples (i.e.: 15 melanomas, 2 melanocytes, 45 CEU individuals from 1K Genomes Project, plus 25 AML and 12 ALL). Results. We sequenced the transcriptome of 10 childhood ALL cases, not carrying other clinical or genetic risk factors. We performed a comprehensive whole-transcriptome analysis, comprising identification of fusion transcripts, alternative splicing and SNPs. Priority was given to fusion transcripts, which could originate from intra- or inter-chromosomal rearrangements, since they might represent potential prognostic markers or therapeutic targets for personalized treatments. We identified 127 fusion candidates. Strikingly, 123 out of 127 events were identified as intra-chromosomal, 119 of which were involving two contiguous genes or with overlapping loci (the so-called “con-joined genes”). Among the four intra-chromosomal events, the NUP214-ABL1 fusion, previously found in T-ALL and responsive to kinase inhibitors, was here identified and validated in one HR B-ALL patient, thus opening new perspectives for targeted treatment options. Finally, among the four inter-chromosomal events, the novel PAX5-POM121C fusion was identified and validated in one LR patient. Both intra- and inter-chromosomal fusions resulted private or low-frequent events, not recurrent in other tumor types, nor in normal blood samples. Among the con-joined genes, we identified a subset of 22 events not present in melanoma nor in normal blood samples, but common to the external AML and ALL datasets. Conclusion. RNA-seq represents one of the most comprehensive approaches to identify genetic alterations carried by leukemia clones. Our analyses identified novel fusion genes, originated by either inter- or intra-chromosomal rearrangements, as well as a considerable number of con-joined genes. Further evaluations will address SNPs, mutations, gene expression changes and splice variants that could be related to a different risk of relapse, and the feasibility of the screening of these candidates on a larger population of consecutive clinical cases. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e23118-e23118
Author(s):  
Alexandra E Gylfe ◽  
Eve Shinbrot ◽  
Boyko Kakaradov ◽  
Wayne Delport ◽  
Corine K Lau ◽  
...  

e23118 Background: Current targeted cancer therapies rely on the identification of clinically relevant somatic alterations in the tumor. Hotspot gene-panels and exome sequencing are designed to quickly assess somatic variations in frequently mutated regions and/or the coding regions of relevant genes, but they have limited ability to detect complex genomic rearrangements or novel structural variations. Here, we describe an integrative and comprehensive approach to fully characterize the genomic complexity of solid tumors using high throughput whole genome sequencing (WGS) and whole transcriptome sequencing (RNA Seq). Methods: We performed WGS and high-depth sequencing of known cancer genes in 14 paired tumor-normal samples of a variety of tumor types. Tumor-specific somatic alteration assessments included protein-coding mutations, copy number variations, gene fusions and structural variants. In addition, RNA Seq data was analyzed to identify expressed somatic alterations. Results: We identified 2 novel fusion genes as well as important structural alterations which could have clinical and therapeutic implications. We described a novel BRAF fusion gene in a cholangiocarcinoma devoid of other known driver mutations. BRAF fusions have not been described previously in cholangiocarcinoma; this fusion may represent an alternative mechanism for MAPK activation and could be a useful drug target. We also identified a novel NTRK3 fusion partner in a glioblastoma tumor. This fusion may imply a novel mechanism for NTRK3 activation. Finally, we identified numerous tandem duplications in an ovarian cancer. Recent advances describe tandem duplication hotspots in ovarian cancer as a potential driver mechanism characterizing a specific mutational signature. Conclusions: Comprehensive genomics assessment of paired tumor-normal samples through whole-genome and transcriptome sequencing can yield additional clinically actionable genomic characteristics that may not be detected in whole-exome or hotspot gene-panel sequencing. These findings have the potential to aid in clinical decision making.


2016 ◽  
Author(s):  
V Wucher ◽  
F Legeai ◽  
B Hédan ◽  
G Rizk ◽  
L Lagoutte ◽  
...  

ABSTRACTWhole transcriptome sequencing (RNA-seq) has become a standard for cataloguing and monitoring RNA populations. Among the plethora of reconstructed transcripts, one of the main bottlenecks consists in correctly identifying the different classes of RNAs, particularly those that will be translated (mRNAs) from the class of long non-coding RNAs (lncRNAs). Here, we present FEELnc (FlExible Extraction of LncRNAs), an alignment-free program which accurately annotates lncRNAs based on a Random Forest model trained with general features such as multi k-mer frequencies and relaxed open reading frames. Benchmarking versus five state-of-art tools shows that FEELnc achieves similar or better classification performance on GENCODE and NONCODE datasets. The program also provides several specific modules that enable to fine-tune classification accuracy, to formalize the annotation of lncRNA classes and to annotate lncRNAs even in the absence of training set of noncoding RNAs. We used FEELnc on a real dataset comprising 20 new canine RNA-seq samples produced in the frame of the European LUPA consortium to expand the canine genome annotation and classified 10,374 novel lncRNAs and 58,640 new mRNA transcripts. FEELnc represents a standardized protocol for identifying and annotating lncRNAs and is freely accessible at https://github.com/tderrien/FEELnc.


2016 ◽  
Vol 1 (4) ◽  
pp. 7 ◽  
Author(s):  
Wafaa Sadeq Al-Wazni ◽  
Bashair Sami Hadi

Objective This study includes the investigation of antibacterial and antivirulence activities of three types of pomegranate peel extracts andthen determines the interaction between the extracts and antibiotic in vitro.Methods The ability of most common isolated bacteria from urinary tract infection (UTI) to produce different virulence factors were testedand the effect of plant extracts on virulence factors were determined; in addition the correlation between extracts and antibiotics wereevaluated by using fractional inhibitory concentrations.Results The inhibition zones diameters of the pomegranate peel extracts against most common isolated bacteria (Staphylococcus aureus andEscherichia coli) increase significantly with increase in concentrations. There is no effect of the extracts on the ability of studied bacteria toproduce hemolysin and protease enzymes, while both studied bacteria lost its ability to produce β-lactamase enzyme after treating with MIC.In addition, extracts were affected largely on adherence activity and biofilm forming ability of tested bacteria. The results found that thepomegranate peel extracts effect alone against pathogenic bacteria was good than they interacted with antibiotics, in most of the results.Conclusion The alcohol extract was the best solvent in its effects on bacterial pathogen and its effect was largely on the ability of the studiedbacteria to form biofilm and adhesion on the epithelial cell. The pomegranate peel extracts were high synergism with some antibioticsagainst pathogenic bacteria.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 350-350
Author(s):  
Valentina Gianfelici ◽  
Sabina Chiaretti ◽  
Zeynep Kalender Atak ◽  
Fulvia Brugnoletti ◽  
Messina Monica ◽  
...  

Abstract T-cell acute lymphoblastic leukemia (T-ALL) is a malignancy of the lymphoblasts committed to the T-cell lineage. Despite the therapeutic improvements witnessed over the years, ∼25% of children and ∼50% of adults still show a poor long-term outcome. While many recurrent oncogenic lesions have been identified through the characterization of chromosomal aberrations and candidate gene sequencing, several observations indicate that additional genetic alterations, not evident by conventional cytogenetics, might influence leukemogenesis and treatment outcome. Improvement of our knowledge in the identification and characterization of new oncogenic genome variations is expected to lead to a better prognostic classification and should also allow the design of tailored therapeutic strategies. To get further insights into the molecular pathogenesis of T-ALL and to identify novel markers for risk stratification and treatment improvement, we performed whole transcriptome sequencing (RNA-seq) on 18 refractory T-ALL cases sampled at diagnosis (median age 37.5 years, range 11-55). A pool of normal thymus cells was used as negative control. Next generation sequencing libraries were constructed from the mRNA fraction, followed by paired-end sequencing on a HiSeq2000 (Illumina). Sequence reads were aligned to the reference genome and were processed to identify gene expression levels, gene fusion transcripts and single nucleotide variations (SNVs). We first determined accurate gene expression levels from the RNA-seq data and used them to classify patients into T-ALL subtypes. Next, we applied the deFuse algorithm to detect fusion transcripts. Fusion transcripts detected also in normal thymus cells were filtered out, as well as fusions involving ribosomal genes. After applying these filters, we obtained 407 fusion transcripts (average: 22.6/sample, range: 0-84) predominantly involving genes localized on the same chromosome and mostly generated by deletion (306/407). Novel candidate fusion transcripts were confirmed by RT-PCR and Sanger sequencing. The SET-NUP214 fusion was identified in 2 cases, as well as 2 novel fusion transcripts involving the T-cell receptor (TCR) genes and not detected by conventional cytogenetics: the first fusion resulted in a chromosomal rearrangement between HOXA-AS4 and TRBC2 (also accompanied by overexpression of the HOXA genes) and the second between TRAC and SOX8 (associated with SOX8 overexpression). Interestingly, we also found out-of-frame fusion transcripts leading to the potential inactivation of tumor suppressor genes, such as PTEN-FAS and MAST3-C19orf10. Finally, we performed SNV calling on our dataset. After removing the most common polymorphisms, we obtained 1,483 protein-altering SNVs (missense, nonsense mutations and mutations affecting splicing), ranging between 30 and 131 per sample, with 85 genes that contain a protein-altering mutation in at least 3 of the 18 samples (i.e. 16% of cohort). Members or modulators of NOTCH and JAK/STAT pathways were the most recurrently mutated, each accounting for ∼38% of cases. In particular, 7/18 samples showed previously reported lesions in the NOTCH1 (n=5) and FBXW7 (n=1) genes but also in novel candidates as NOTCH2 (n=1), NOTCH3 (n=1) and SPEN (n=1). Interestingly, 1 patient showed 2 different mutations in the exon 26 of NOTCH1, while in 2 samples NOTCH1 mutation was associated with mutations in NOTCH2 or NOTCH3. Similarly, the JAK/STAT pathway was affected in 7/18 samples, including JAK1 (n=2), JAK3 (n=5), TYK2 (n=1) but also the novel candidates STAT5A (n=2) and STAT6 (n=1). Four of the 5 JAK3-positive patients showed also a mutation in another gene of the same pathway, such as JAK1 (n=1), STAT5A (n=2) and STAT6 (n=1). Thus, mutational screening of both the NOTCH and JAK/STAT pathway shows that mutations can occur simultaneously and suggests that more than one lesion is required for leukemic transformation. In conclusion, RNA-seq appears as a promising tool to dissect the heterogeneity of T-ALL and to identify targets that might be useful for tailored therapeutic interventions. Further investigations are ongoing to determine the recurrence and specificity of these lesions, and their potential in inducing a refractory phenotype. Finally, in vitro experiments will be carried out to investigate the transforming capability of specific lesions and the targettability of the recurrently impaired pathways. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document