scholarly journals Modified Vermiculite as Adsorbent of Hexavalent Chromium in Aqueous Solution

Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 749
Author(s):  
Celia Marcos ◽  
Valeria Medoro ◽  
Alaa Adawy

The aim of this study was to investigate the efficiency of removing Cr6+ from aqueous solutions using two exfoliated vermiculite: (1) heated abruptly at 1000 °C and (2) irradiated with microwave radiation. The effects investigated were contact time, adsorbate concentration and initial Cr6+ concentration. The adsorption with both exfoliated vermiculites was well described by the DKR isotherm, indicative of a cooperative process and with the pseudo second order kinetic model. The Kd value for the two exfoliated vermiculites was similar, 0.2 ·1010 μg/Kg. The maximum adsorption capacity of Cr6+ with thermo-exfoliated vermiculite, 2.81 mol/g, was much higher than with microwave irradiated vermiculite, 0.001 mol/g; both values were obtained with 0.5 g of vermiculite in contact with distilled water enriched with 1 ppm of Cr6+ for 24 h. Factors such as ion chemistry, the solution pH and ionic strength, influence the values of capacity, adsorption energy and initial adsorption rate values of the exfoliated vermiculite. In addition, these values depended on the exfoliation process, being the adsorption capacity highest with abrupt heating of vermiculite, while the adsorption energy and rate values showed just a slight increase with microwave irradiation. This aspect is important to select the most suitable vermiculite modification treatment to use it as an adsorbent.

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1312 ◽  
Author(s):  
Xinyu Zheng ◽  
Huaili Zheng ◽  
Rui Zhao ◽  
Yongjun Sun ◽  
Qiang Sun ◽  
...  

The removal of methylene blue (MB) from wastewater has attracted global concerns. In this study, polymer-functionalized magnetic nanoparticles for MB removal, Fe3O4@SiO2-MPS-g-AA-AMPS (FSMAA), were successfully synthesized by grafting acrylic acid (AA) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) on the surface of vinyl-modified Fe3O4@SiO2. With various characterization techniques, it was confirmed that the obtained FSMAA had a core–shell structure, a good magnetic property, and plenty of functional groups on its surface. MB adsorption experiments showed that the adsorption capacity of FSMAA was notably enhanced as the grafted monomer concentration and solution pH were increased. The adsorption kinetic data and isothermal data were well described by the pseudo-second-order kinetic model and the Langmuir model, respectively. The maximum adsorption capacity of FSMAA was 421.9 mg g−1 with grafted monomer concentration at 2.0 mol L−1 and solution pH at 9, much higher than those of other adsorbents stated in previous literatures. Based on XPS analysis, surface adsorption mechanism between FSMAA and MB was electrostatic interaction, hydrogen bonding, and hydrophobic interaction. Furthermore, FSMAA was effectively regenerated by acid pickling, and the remaining adsorption capacity was more than 60% after eight adsorption–regeneration cycles. All the results demonstrated the self-made FSMAA was a desirable adsorbent to remove MB from wastewater.


2018 ◽  
Vol 15 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Karima Derdour ◽  
Chafia Bouchelta ◽  
Amina Khorief Naser-Eddine ◽  
Mohamed Salah Medjram ◽  
Pierre Magri

Purpose The purpose of this paper is to focus on the removal of hexavalent chromium [Cr(VI)] from wastewater by using activated carbon-supported Fe catalysts derived from walnut shell prepared using a wetness impregnation process. The different conditions of preparation such as impregnation rate and calcination conditions (temperature and time) were optimized to determine their effects on the catalyst’s characteristics. Design/methodology/approach The catalyst samples were characterized using thermogravimetric analysis, scanning electron microscopy and Fourier transform infrared spectroscopy. The adsorption of Cr(VI) by using using activated carbon supported Fe catalysts derived from walnut shell as an adsorbent and catalyst was investigated under different adsorption conditions. The parameters studied were contact time, adsorbent dose, solution pH and initial concentrations. Findings Results showed that higher adsorption capacity and rapid kinetics were obtained when the activated walnut shell was impregnated with Fe at 5 per cent and calcined under N2 flow at 400°C for 2 h. The adsorption isotherms data were analyzed with Langmuir and Freundlich models. The better fit is obtained with the Langmuir model with a maximum adsorption capacity of 29.67 mg/g for Cr(VI) on Fe5-AWS at pH 2.0. Originality/value A comparison of two kinetic models shows that the adsorption isotherms system is better described by the pseudo-first-order kinetic model.


SAINTIFIK ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 104-115
Author(s):  
Agusriyadin Agusriyadin

Penelitian ini bertujuan untuk menguji kemampuan AK dan AKPM dalam mengadsorpsi ion Cu (II), pengaruh parameter adsorpsi dan mekanisme adsorpsi. AK dan AKP Madsorben dibuat dari residu ampas kelapa. Adsorben dikarakterisasi dengan FTIR, SEM dan EDS. Pengaruh parameter adsorpsi seperti pH awal, dosis adsorben, waktu kontak dan konsentrasi ion Cu (II) awal diperiksa untuk menentukan kondisi optimum serapan tembaga (II). Ion Cu (II) yang teradsorpsi diukur berdasarkan pada konsentrasi Ion Cu (II) sebelum dan sesudah adsorpsi menggunakan metode AAS. Hasil karakterisasi menunjukkan bahwa struktur pori dan gugus fungsi tersedia pada permukaan adsorben. Menurut percobaan efek pH, kapasitas adsorpsi maksimum dicapai pada pH 7. Waktu kontak optimal dan konsentrasi tembaga awal (II) ditemukan masing-masing pada 120 menit dan 100 mg L-1. Data eksperimental sesuai dengan model kinetik orde dua orde dua, dan Langmuir isoterm adsorpsi yang diperoleh paling sesuai dengan data adsorpsi. Kapasitas adsorpsi maksimum adsorben ditemukan menjadi 4,73 dan 6,46 mg g-1 pada kondisi optimal. The results of characterization showed that the pore structure and the functional groups were available on adsorbent surface. According to the pH effect experiments, the maximum adsorption capacity was achieved at pH 7. Optimum contact time and initial copper(II) concentration were found at 120 min and 100 mg L-1, respectively. The experimental data were comply with the pseudo-second-order kinetic model, and Langmuir adsorption isotherm obtained best fitted the adsorption data. The maximum adsorption capacity of the adsorbents was found to be 4.73 and 6.46 mg g-1 at optimum conditions.


Author(s):  
Xiaochun Yin ◽  
Nadi Zhang ◽  
Meixia Du ◽  
Hai Zhu ◽  
Ting Ke

Abstract In this paper, a series of bio-adsorbents (LR-NaOH, LR-Na2CO3 and LR-CA) were successfully prepared by modifying Licorice Residue with NaOH, Na2CO3 and citric acid, which were used as the adsorbents to remove Cu2+ from wastewater. The morphology and structure of bio-adsorbents were characterized by Fourier Transform Infrared, SEM, TG and XRD. Using static adsorption experiments, the effects of the adsorbent dosage, the solution pH, the adsorption time, and the initial Cu2+ concentration on the adsorption performance of the adsorbents were investigated. The results showed that the adsorption process of Cu2+ by the bio-adsorbents can be described by pseudo-second order kinetic model and the Langmuir model. The surface structure of the LR-NaOH, LR-Na2CO3 and LR-CA changed obviously, and the surface-active groups increased. The adsorption capacity of raw LR was 21.56 mg/g, LR-NaOH, LR- Na2CO3 significantly enhanced this value up to 43.65 mg/g, 43.55 mg/g, respectively. After four adsorption-desorption processes, the adsorption capacity of LR-NaOH also maintained about 73%. Therefore, LR-NaOH would be a promising adsorbent for removing Cu2+ from wastewater, and the simple strategy towards preparation of adsorbent from the waste residue can be as a potential approach using in the water treatment.


2019 ◽  
Vol 19 (11) ◽  
pp. 7035-7043 ◽  
Author(s):  
Tong Ouyang ◽  
Jidan Tang ◽  
Fang Liu ◽  
Chang-Tang Chang

The objective of this paper is to study the removal of Cr(VI) in aqueous solution by using a new graphene oxide-coated rice husk biochar composite (GO-RHB). GO-RHB is a synthetic material having a porous structure with lots of oxygen-containing functional groups and a large surface area that provide effective adsorption sites. Experiments showed that GO-RHB had higher adsorption capacity under acidic than under alkaline conditions. At pH of 2, GO-RHB has the maximum adsorption capacity(48.8 mg g−1). Equilibrium data obtained by fitting with the Langmuir and Freundlich models indicate that the reaction process was monolayer adsorption. The adsorption of Cr(VI) followed the pseudo-second-order kinetic model that illustrates chemical adsorption. Intraparticlediffusion studies further revealed that film diffusion was taking place. Moreover, the results of thermodynamics showed that the adsorption process was endothermic and spontaneous in nature. The removal mechanism of Cr(VI) was also explained in detail. The prepared adsorbent is highly efficient and might be useful than many other conventional adsorbent used for the removal of Cr(VI) from wastewater.


2016 ◽  
Vol 18 (4) ◽  
pp. 96-103 ◽  
Author(s):  
Wojciech Konicki ◽  
Rafał Pelka ◽  
Walerian Arabczyk

Abstract The removal of Ni2+ from aqueous solution by iron nanoparticles encapsulated by graphitic layers (Fe@G) was investigated. Nanoparticles Fe@G were prepared by chemical vapor deposition CVD process using methane as a carbon source and nanocrystalline iron. The properties of Fe@G were characterized by X-ray Diffraction method (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), Fourier Transform-Infrared Spectroscopy (FTIR), BET surface area and zeta potential measurements. The effects of initial Ni2+ concentration (1–20 mg L−1), pH (4–11) and temperature (20–60°C) on adsorption capacity were studied. The adsorption capacity at equilibrium increased from 2.96 to 8.78 mg g−1, with the increase in the initial concentration of Ni2+ from 1 to 20 mg L−1 at pH 7.0 and 20oC. The experimental results indicated that the maximum Ni2+ removal could be attained at a solution pH of 8.2 and the adsorption capacity obtained was 9.33 mg g−1. The experimental data fitted well with the Langmuir model with a monolayer adsorption capacity of 9.20 mg g−1. The adsorption kinetics was found to follow pseudo-second-order kinetic model. Thermodynamics parameters, ΔHO, ΔGO and ΔSO, were calculated, indicating that the adsorption of Ni2+ onto Fe@G was spontaneous and endothermic in nature.


2014 ◽  
Vol 931-932 ◽  
pp. 286-290 ◽  
Author(s):  
W. Pimpa ◽  
C. Pimpa

The intention of this study was to prepare the environment friendly durian seed starch/polyvinyl alcohol (DSS/PVOH) composite hydrogels modified by chemical cross-linking with glutaraldehyde and to assess the adsorption potential of the DSS/PVOH composite hydrogels for the removal of the synthetic dyes from aqueous solution. The hydrogels were characterized by swelling behavior and scanning electron microscope (SEM). The effect of DSS content and initial dye solution pH on the adsorption capacity was studied conducting batch experiment system. The DSS/PVOH composite hydrogels consisting 3% DSS has optimum adsorption capacity of 3.411 mg/g (for methylene blue under the condition of pH 7) and 3.274 mg/g (for acid orange 8 under the condition of pH 2.5) at 24 h of contact time. The adsorptions were well fitted by the pseudo-second order kinetic model. It was indicated that the mechanism of removal predominant is effective for low dye concentrations, below 10 mg/l.


2015 ◽  
Vol 737 ◽  
pp. 537-540
Author(s):  
Yan Wei Guo ◽  
Hua Zhang ◽  
Zhi Liang Zhu

A novel Mg/Fe/Ce layered double hydroxide (LDHs) and its calcined product (CLDH) were synthesized and CLDH was used as adsorbents for the removal of chlorate ions. Results showed that the initial solution pH was an important factor influencing the chlorate adsorption. The adsorption behavior of chlorate followed the Langmuir adsorption isotherm with a maximum adsorption capacity of 18.2 mg/g. The adsorption kinetics of chlorate on CLDH can be described by the pseudo-second-order kinetic model. It was concluded that the CLDH material is a potential adsorbent for the purification of polluted water with chlorate.


Author(s):  
Redouane Ouafi ◽  
Anass Omor ◽  
Younes Gaga ◽  
Mohamed Akhazzane ◽  
Mustapha Taleb ◽  
...  

This research investigates the adsorption potential of pine cones powder (PCP) for the removal of copper ions (Cu(II)) from aqueous solutions. The process of adsorption was reasonably fast to be completed within a time of 60 min. The pseudo-second order kinetic model describes properly the Cu(II) adsorption by PCP. The adsorbent was characterised by various instrumental techniques and batch experiments were conducted to investigate the effect of PCP dose, solution pH, particle size and initial Cu(II) concentration on adsorption efficiency. Optimum Cu(II) removal occurred at a slightly acidic pH, with a particle size less than 100 ?m. The effective PCP dose was estimated to be 36 g.L-1. The increase in the initial concentration of Cu (II) was accompanied by a reduction in the rate of its reduction by almost half. The Langmuir model was the best fitting isotherm with a maximum adsorption capacity of 9.08 mg.g-1. The thermodynamic parameters values showed that the Cu(II) adsorption was a spontaneous and endothermic process. The results of this research suggest that Cu(II) could be removed through an environmentally friendly process using PCP as low-cost natural wastes.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3054
Author(s):  
Yiming Zhou ◽  
Te Li ◽  
Juanli Shen ◽  
Yu Meng ◽  
Shuhua Tong ◽  
...  

This article reports effective removal of methylene blue (MB) dyes from aqueous solutions using a novel magnetic polymer nanocomposite. The core-shell structured nanosorbents was fabricated via coating Fe3O4 nanoparticles with a layer of hydrogel material, that synthesized by carboxymethyl cellulose cross-linked with poly(acrylic acid-co-acrylamide). Some physico-chemical properties of the nanosorbents were characterized by various testing methods. The nanosorbent could be easily separated from aqueous solutions by an external magnetic field and the mass fraction of outer hydrogel shell was 20.3 wt%. The adsorption performance was investigated as the effects of solution pH, adsorbent content, initial dye concentration, and contact time. The maximum adsorption capacity was obtained at neutral pH of 7 with a sorbent dose of 1.5 g L−1. The experimental data of MB adsorption were fit to Langmuir isotherm model and Pseudo-second-order kinetic model with maximum adsorption of 34.3 mg g−1. XPS technique was applied to study the mechanism of adsorption, electrostatic attraction and physically adsorption may control the adsorption behavior of the composite nanosorbents. In addition, a good reusability of 83.5% MB recovering with adsorption capacity decreasing by 16.5% over five cycles of sorption/desorption was observed.


Sign in / Sign up

Export Citation Format

Share Document