scholarly journals Atomic Structure, Electronic and Mechanical Properties of Pyrophyllite under Pressure: A First-Principles Study

Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 778
Author(s):  
Xinzhan Qin ◽  
Jian Zhao ◽  
Jiamin Wang ◽  
Manchao He

Pyrophyllite is extensively used in the high-pressure synthesis industry as a pressure-transmitting medium because of its outstanding pressure transmission, machinability, and insulation. Therefore, the atomic structure, electronic, and mechanical behavior of pyrophyllite [Al4Si8O20(OH)4] under high pressure should be discussed deeply and systematically. In the present paper, the lattice parameters, bond length, the electronic density of states, band structure, elastic constants, and mechanical parameters of pyrophyllite are investigated using density functional theory (DFT) from a microscopic perspective. The pressure dependence of atomic structure, electronic, and mechanical properties of pyrophyllite is analyzed for a wide range of pressure (from 0 GPa to 13.87 GPa). Under high pressure, the major bond lengths and layer thicknesses decrease slightly, and mechanical properties are improved with increasing pressure. The calculated electronic and band structures show only a slight change with increasing pressure, implying that the effect of pressure on the electronic property of pyrophyllite is weak, and pyrophyllite still has good stability under high pressure. The theoretical calculations presented here clarify the electronic and mechanical properties of natural pyrophyllite that are difficult to obtain experimentally because of their small particle size.

Clay Minerals ◽  
2018 ◽  
Vol 53 (3) ◽  
pp. 393-402 ◽  
Author(s):  
Jian Zhao ◽  
Wei Gao ◽  
Zhi-Gang Tao ◽  
Hong-Yun Guo ◽  
Man-Chao He

ABSTRACTKaolinite can be used for many applications, including the underground storage of gases. Density functional theory was employed to investigate the adsorption of hydrogen molecules on the kaolinite (001) surface. The coverage dependence of the adsorption sites and energetics was studied systematically for a wide range of coverage, Θ (from 1/16 to 1 monolayer). The three-fold hollow site is the most stable, followed by the bridge, top-z and top sites. The adsorption energy of H2 decreased with increasing coverage, thus indicating the lower stability of surface adsorption due to the repulsion of neighbouring H2 molecules. The coverage has obvious effects on hydrogen adsorption. Other properties of the H2/kaolinite (001) system, including the lattice relaxation and changes of electronic density of states, were also studied and are discussed in detail.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 613
Author(s):  
Jian Zhao ◽  
Yu Cao ◽  
Lei Wang ◽  
Hai-Jiang Zhang ◽  
Man-Chao He

Montmorillonite is an important layered phyllosilicate material with many useful physicochemical and mechanical properties, which is widely used in medicine, environmental protection, construction industry, and other fields. In order to a get better understanding of the behavior of montmorillonite under high pressure, we studied its atomic structure, electronic and mechanical properties using density functional theory (DFT), including dispersion corrections, as function of the interlayer Na and Mg cations. At ideal condition, the calculations of lattice constants, bond length, band structure, and elastic modulus of Na- and Mg-montmorillonite are in good agreement with the experimental values. Under high pressure, the lattice constants and major bond lengths decreased with increasing pressure. The calculated electronic properties and band structure show only a slight change under 20 GPa, indicating that the effect of pressure on the electronic properties of Na- and Mg-montmorillonite is weak. The bulk modulus, shear modulus, Young’s modulus, shear wave velocity and compression wave velocity of Na- and Mg-montmorillonite are positively correlated with the external pressure, and the other mechanical parameters have a little change. The calculated studies will be useful to explore experiments in the future from a purely scientific point of view.


2011 ◽  
Vol 66 (10-11) ◽  
pp. 656-660
Author(s):  
Dai Wei ◽  
Song Jin-Fan ◽  
Wang Ping ◽  
Lu Cheng ◽  
Lu Zhi-Wen ◽  
...  

A theoretical investigation on structural and elastic properties of zinc sulfide semiconductor under high pressure is performed by employing the first-principles method based on the density functional theory. The calculated results show that the transition pressure Pt for the structural phase transition from the B3 structure to the B1 structure is 17:04 GPa. The calculated values are generally speaking in good agreement with experiments and with similar theoretical calculations.


2017 ◽  
Vol 11 (2) ◽  
pp. 120-126 ◽  
Author(s):  
Ramanathan Chandiramouli ◽  
Veerappan Nagarajan

Mechanical properties and band structure of rhombohedral BiFeO3 nanostructures were studied using density functional theory for different pressures in the range from 0 to 50GPa. The elastic constant of BiFeO3 nanoceramics was determined and different moduli were calculated for various applied pressures. The bulk (B) and shear (G) modulus show an increasing trend on applied high pressure. The findings of the present work also confirm that the hardness of BiFeO3 increases with the applied pressure. The ductility of BiFeO3 nanostructure increases upon increasing the pressure, which is confirmed from Poisson?s ratio and B/G ratio. The band structure studies were also carried out under high pressure and showed that the band gap decreases upon increase in the applied pressure.


2019 ◽  
Author(s):  
Drew P. Harding ◽  
Laura J. Kingsley ◽  
Glen Spraggon ◽  
Steven Wheeler

The intrinsic (gas-phase) stacking energies of natural and artificial nucleobases were explored using density functional theory (DFT) and correlated ab initio methods. Ranking the stacking strength of natural nucleobase dimers revealed a preference in binding partner similar to that seen from experiments, namely G > C > A > T > U. Decomposition of these interaction energies using symmetry-adapted perturbation theory (SAPT) showed that these dispersion dominated interactions are modulated by electrostatics. Artificial nucleobases showed a similar stacking preference for natural nucleobases and were also modulated by electrostatic interactions. A robust predictive multivariate model was developed that quantitively predicts the maximum stacking interaction between natural and a wide range of artificial nucleobases using molecular descriptors based on computed electrostatic potentials (ESPs) and the number of heavy atoms. This model should find utility in designing artificial nucleobase analogs that exhibit stacking interactions comparable to those of natural nucleobases. Further analysis of the descriptors in this model unveil the origin of superior stacking abilities of certain nucleobases, including cytosine and guanine.


2018 ◽  
Author(s):  
Mihails Arhangelskis ◽  
Athanassis Katsenis ◽  
Novendra Novendra ◽  
Zamirbek Akimbekov ◽  
Dayaker Gandrath ◽  
...  

By combining mechanochemical synthesis and calorimetry with theoretical calculations, we demonstrate that dispersion-corrected periodic density functional theory (DFT) can accurately survey the topological landscape and predict relative energies of polymorphs for a previously inaccessible fluorine-substituted zeolitic imidazolate framework (ZIF). Experimental screening confirmed two out of three theoretically anticipated polymorphs, and the calorimetric measurements provided an excellent match to theoretically calculated energetic difference between them.<br>


2012 ◽  
Vol 717-720 ◽  
pp. 415-418
Author(s):  
Yoshitaka Umeno ◽  
Kuniaki Yagi ◽  
Hiroyuki Nagasawa

We carry out ab initio density functional theory calculations to investigate the fundamental mechanical properties of stacking faults in 3C-SiC, including the effect of stress and doping atoms (substitution of C by N or Si). Stress induced by stacking fault (SF) formation is quantitatively evaluated. Extrinsic SFs containing double and triple SiC layers are found to be slightly more stable than the single-layer extrinsic SF, supporting experimental observation. Effect of tensile or compressive stress on SF energies is found to be marginal. Neglecting the effect of local strain induced by doping, N doping around an SF obviously increase the SF formation energy, while SFs seem to be easily formed in Si-rich SiC.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1125
Author(s):  
Teng Teng ◽  
Jinfan Xiong ◽  
Gang Cheng ◽  
Changjiang Zhou ◽  
Xialei Lv ◽  
...  

A new series of tetrahedral heteroleptic copper(I) complexes exhibiting efficient thermally-activated delayed fluorescence (TADF) in green to orange electromagnetic spectral regions has been developed by using D-A type N^N ligand and P^P ligands. Their structures, electrochemical, photophysical, and electroluminescence properties have been characterized. The complexes exhibit high photoluminescence quantum yields (PLQYs) of up to 0.71 at room temperature in doped film and the lifetimes are in a wide range of 4.3–24.1 μs. Density functional theory (DFT) calculations on the complexes reveal the lowest-lying intraligand charge-transfer excited states that are localized on the N^N ligands. Solution-processed organic light emitting diodes (OLEDs) based on one of the new emitters show a maximum external quantum efficiency (EQE) of 7.96%.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Carl E. Belle ◽  
Vural Aksakalli ◽  
Salvy P. Russo

AbstractFor photovoltaic materials, properties such as band gap $$E_{g}$$ E g are critical indicators of the material’s suitability to perform a desired function. Calculating $$E_{g}$$ E g is often performed using Density Functional Theory (DFT) methods, although more accurate calculation are performed using methods such as the GW approximation. DFT software often used to compute electronic properties includes applications such as VASP, CRYSTAL, CASTEP or Quantum Espresso. Depending on the unit cell size and symmetry of the material, these calculations can be computationally expensive. In this study, we present a new machine learning platform for the accurate prediction of properties such as $$E_{g}$$ E g of a wide range of materials.


2002 ◽  
Vol 721 ◽  
Author(s):  
G. Y. Guo

AbstractLatest first-principles density functional theoretical calculations using the generalized gradient approximation and highly accurate all-eleectron full-potential linearized augmented plane wave method, show that bulk hcp Cr would be a paramagnet and that no ferromagnetic state could be stabilized over a wide range of volume [1]. To understand the recent observation of the weakly ferromagnetic state of Cr in hcp Cr/Ru (0001) superlattices [2], the same theoretical calculations have been carried out for the hcp Cr3/Ru7 (0001) and hcp Cr3/fcc Cu6 (111) superlattices. The Cr/Ru superlattice is found to be ferromagnetic with a small magnetic moment of ∼0.31μB/Cr while in contrast, Cr/Cu superlattice is found to be nonmagnetic.


Sign in / Sign up

Export Citation Format

Share Document