scholarly journals Whitlockite-Type Structure as a Matrix for Optical Materials: Synthesis and Characterization of Novel TM-SM Co-Doped Phosphate Ca9Gd(PO4)7, a Single-Phase White Light Phosphors

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 76
Author(s):  
Ivan V. Nikiforov ◽  
Dina V. Deyneko ◽  
Dmitry А. Spassky ◽  
Bogdan I. Lazoryak ◽  
Sergey M. Aksenov

A series of novel phosphates with the general formulas Ca9Gd0.9−xTm0.1Smx(PO4)7 and Ca9Gd0.9−yTmySm0.1(PO4)7 were synthesized by solid-state method. As-obtained phosphates were characterized by powder X-ray diffraction and second harmonic generation analyses, dielectric measurements, luminescence spectroscopy. All samples were single phase and characterized by the whitlockite-type structure with space group R3c. An influence of admixture concentration of REE3+ ions in the initial host on dielectric properties was studied in details. Synthesized phosphates are characterized by intensive luminescence. The emission in the orange region of the visible spectrum is observed for Ca9Gd0.9Sm0.1(PO4)7 with a maximum intensity band at 602 nm. The line in blue region at 455 nm, which corresponds to 1D2 → 3F4 Tm3+ transition, is registered for Ca9Gd0.9Tm0.1(PO4)7. Emission in the white region of CIE coordinates was registered for Tm-Sm co-doped compounds.

2018 ◽  
Vol 27 (01) ◽  
pp. 1850002
Author(s):  
M. Thairiyaraja ◽  
G. Arivazhagan ◽  
A. Elangovan ◽  
P. Anandan ◽  
G. Bakiyaraj ◽  
...  

Organic single crystals of 2-amino-5-bromopyridinium-4-hydroxybenzoate (2A5BPH) were grown by slow evaporation technique at room temperature using methanol as a solvent. Functional groups present in the synthesized compound were confirmed by FTIR spectral analysis. Single crystal X-ray diffraction (XRD) confirms that the crystal belongs to orthorhombic system with noncentrosymmetric space group Pna21. UV–visible spectrum shows that the crystal has lower cut off wave length of 388[Formula: see text]nm with an optical band gap of 2.9[Formula: see text]eV. The dielectric and photoconductivity studies are analyzed. The powder second harmonic generation (SHG) efficiency test and antioxidant studies along with quantum chemical calculations were also carried out. The compound is found to be 3 times more efficient in second harmonic signal generation than KDP. The crystal also significantly exhibits antioxidant activity against DPPH and OH radicals.


2012 ◽  
Vol 501 ◽  
pp. 101-105
Author(s):  
M.L. Yuen ◽  
Y.P. Tan ◽  
K.B. Tan ◽  
Y.H. Taufiq-Yap

Bismuth titanate solid solutions, Bi12+xTiO10+δ (0 ≤ x ≤ 0.6), were synthesized by conventional solid state method at sintering temperature of 700°C for 48 h. Structural studies were performed by powder X-ray diffraction (XRD) analysis and revealed that single-phase materials were obtained with a general formula of Bi12+xTiO10+δ (0 ≤ x ≤ 0.6). The electrical properties of all the single-phase samples were studied using the impedance spectroscopy technique. Further characterization of the materials was carried out using differential thermal analysis (DTA) and indicated that no phase transition was observed. The TGA analysis was observed and found that all the materials were thermally stable.


2012 ◽  
Vol 584 ◽  
pp. 13-17 ◽  
Author(s):  
G. Peramaiyan ◽  
P. Pandi ◽  
B.M. Sornamurthy ◽  
R. Mohan Kumar

L-asparagine L-tartrate (LAT), an organic compound has been synthesized from aqueous solution and bulk single crystal has been grown by slow evaporation technique. Powder X-ray diffraction studies confirmed the monoclinic structure of the grown LAT crystal. The presence of functional groups of the grown crystal was identified by FTIR studies. Linear optical property of the grown crystal was studied by UV-Vis spectral analysis. Microhardness studies reveal that the crystal possesses relatively higher hardness compared to other organic nonlinear optical crystals. Dielectric response of the L-asparagine L-tartrate crystal was analyzed for different frequencies at various temperatures. Kurtz-Perry powder second harmonic generation test confirmed the nonlinear optical properties of the as-grown LAT crystal.


Author(s):  
Adelyna Oktavia ◽  
Kurnia Sembiring ◽  
Slamet Priyono

Hospho-material of olivine, LiMnPO4 identified as promising for cathode material generation next Lithium-ion battery and has been successfully synthesized by solid-state method with Li2Co3, 2MnO2, 2NH4H2PO4 as raw material. The influence of initial concentration of precursors at kalsinasi temperatures (400-800 ° C) flows with nitrogen. The purity and composition phase verified by x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), spectroscopy, energy Dispersive x-ray Analysis (EDS), Raman spectra. General investigation shows that there is a correlation between the concentration of precursors, the temperature and the temperature of sintering kalsinasi that can be exploited to design lithium-ion next generation.


2020 ◽  
Author(s):  
Zhou Xu ◽  
Sun Jiajia ◽  
Zhang Ningkang ◽  
Sun Huazhang ◽  
Tao Wenhong ◽  
...  

Abstract Ce2[Zr1-x(Mg1/3Sb2/3)x]3(MoO4)9 (0.02≤x≤0.10) ceramics were prepared well through the traditional solid-state method. A single phase, belonging to the space group of R-3c, was detected by using X-ray diffraction at sintering temperatures ranging from 700 to 850 °C. The crystallization micro-structural of specimens was examined by applying Scanning electron microscopy. The structural refinement of these samples was investigated in detail by performing the Rietveld refinement method. The intrinsic properties were calculated and explored via far-infrared reflectivity spectroscopy. The correlations between the chemical bonds parameters and microwave dielectric properties were calculated and analyzed by P-V-L theory. Ce2[Zr0.94(Mg1/3Sb2/3)0.06]3(MoO4)9 ceramics with excellent dielectric properties: εr = 10.37, Q×f = 71748 GHz and τf = −13.6 ppm/°C sintered at 725 °C for 6 hours.


2011 ◽  
Vol 412 ◽  
pp. 61-64
Author(s):  
Xiao Bo Wu ◽  
Da Zhi Sun ◽  
Dan Yu Jiang ◽  
Hai Fang Xu ◽  
De Xin Huang ◽  
...  

3Y-TZP powder has been successfully synthesized by gel solid-state method. The structural phases of powder particles were analyzed by X-ray diffraction and the morphology was analyzed by scanning electron microscopy. The average size of grains was 230 nm. The sintering behavior, mechanical properties and microstructure of 3Y-TZP ceramics sintered by this powder were investigated. The experiment results showed that the mechanical properties of ceramics were excellent.


1999 ◽  
Vol 4 (S1) ◽  
pp. 429-434 ◽  
Author(s):  
C. H. Wei ◽  
Z. Y. Xie ◽  
J. H. Edgar ◽  
K. C. Zeng ◽  
J. Y. Lin ◽  
...  

Boron was incorporated into GaN in order to determine its limits of solubility, its ability of reducing the lattice constant mismatch with 6H-SiC, as well as its effects on the structural and optical properties of GaN epilayers. BxGa1−xN films were deposited on 6H-SiC (0001) substrates at 950 °C by low pressure MOVPE using diborane, trimethylgallium, and ammonia as precursors. A single phase alloy with x=0.015 was successfully produced at a gas reactant B/Ga ratio of 0.005. Phase separation into pure GaN and BxGa1−xN alloy with x=0.30 was deposited for a B/Ga reactant ratio of 0.01. This is the highest B fraction of the wurtzite structure alloy ever reported. For B/Ga ratio ≥ 0.02, no BxGa1−xN was formed, and the solid solution contained two phases: wurtzite GaN and BN based on the results of Auger and x-ray diffraction. The band edge emission of BxGa1−xN varied from 3.451 eV for x=0 with FWHM of 39.2 meV to 3.465 eV for x=0.015 with FWHM of 35.1 meV. The narrower FWHM indicated that the quality of GaN epilayer was improved with small amount of boron incorporation.


2020 ◽  
Vol 850 ◽  
pp. 267-272 ◽  
Author(s):  
Regina Burve ◽  
Vera Serga ◽  
Aija Krūmiņa ◽  
Raimons Poplausks

Due to its magnetic, electrical, absorption, and emission properties, nanoscale gadolinium oxide is widely used in various fields. In this research, nanocrystalline Gd2O3 powders and films on glass substrates have been produced by the extraction-pyrolytic method. X-ray diffraction analysis revealed the formation of single phase Gd2O3 with cubic crystal structure and the mean crystallite size from 9 to 25 nm in all produced materials. The morphology of samples has been characterized by scanning electron microscopy and transmission electron microscopy.


1998 ◽  
Vol 537 ◽  
Author(s):  
C. H. Wei ◽  
Z. Y. Xie ◽  
J. H. Edgar ◽  
K. C. Zeng ◽  
J. Y. Lin ◽  
...  

AbstractBoron was incorporated into GaN in order to determine its limits of solubility, its ability of reducing the lattice constant mismatch with 6H-SiC, as well as its effects on the structural and optical properties of GaN epilayers. BxGal-xN films were deposited on 6H-SiC (0001) substrates at 950 °C by low pressure MOVPE using diborane, trimethylgallium, and ammonia as precursors. A single phase alloy with x=0.015 was successfully produced at a gas reactant B/Ga ratio of 0.005. Phase separation into pure GaN and BxGal-xN alloy with x=0.30 was deposited for a B/Ga reactant ratio of 0.01. This is the highest B fraction of the wurtzite structure alloy ever reported. For B/Ga ratio ≥ 0.02, no BxGal-xN was formed, and the solid solution contained two phases: wurtzite GaN and BN based on the results of Auger and x-ray diffraction. The band edge emission of BxGal-xN varied from 3.451 eV for x=0 with FWHM of 39.2 meV to 3.465 eV for x=0.015 with FWHM of 35.1 meV. The narrower FWHM indicated that the quality of GaN epilayer was improved with small amount of boron incorporation.


2008 ◽  
Vol 368-372 ◽  
pp. 754-757
Author(s):  
Hasan Gocmez ◽  
Hirotaka Fujimori

The citrate gel method, similar to the polymerized complex method, was used to synthesize homogenous tetragonal zirconia at 800oC and 1000oC. Nanocrystalline tetragonal single phase has been fully stabilized with 3, 7, 10 mol% CaO and 10, 15 mol% MgO at 800oC, respectively. In addition, the XRD analysis showed the absence of monoclinic phase after addition of 7 and 10 mol% CaO into zirconia-based solid solutions, which have been fully stabilized both 800oC and 1000oC. The crystallite sizes of the t-ZrO2 with 3, 7 and 10 mol% CaO at 1000oC were 32, 28 and 29nm, respectively. For ZrO2- x mol% MgO (x=3, 10, 15) solid solution, the crystallite sizes of samples at 800oC were less than 29nm, however it was increased up to 69nm at 1000oC. The prepared gel and subsequent heat-treated powders were characterized by X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy (TEM) to get detail information regarding to differentiation of polymorphs of zirconia as well as formation of powders.


Sign in / Sign up

Export Citation Format

Share Document