scholarly journals Characteristics of a Low-Sulfidation Epithermal Deposit in the River Reef Zone and the Watuputih Hill, the Poboya Gold Prospect, Central Sulawesi, Indonesia: Host Rocks and Hydrothermal Alteration

Minerals ◽  
2017 ◽  
Vol 7 (7) ◽  
pp. 124 ◽  
Author(s):  
Syafrizal ◽  
Tomy Alvin Rivai ◽  
Kotaro Yonezu ◽  
Damar Kusumanto ◽  
Koichiro Watanabe ◽  
...  
2019 ◽  
Vol 69 (4) ◽  
pp. 385-401 ◽  
Author(s):  
Tomy Alvin Rivai ◽  
Kotaro Yonezu ◽  
Syafrizal ◽  
Kenzo Sanematsu ◽  
Damar Kusumanto ◽  
...  

2019 ◽  
Vol 55 (1) ◽  
pp. 202
Author(s):  
Foteini Aravani ◽  
Lambrini Papadopoulou ◽  
Vasileios Melfos ◽  
Triantafillos Soldatos ◽  
Triantafillia Zorba ◽  
...  

The volcanic rocks of Kornofolia area, Evros, host a number of epithermal-type veins. The host rocks are Oligocene calc-alkaline andesites to rhyo-dacites. The andesites form hydrothermal breccias and show hydrothermal alteration. The veins comprise mainly silica polymorphs such as quartz, chalcedony and three types of opal (milky white, transparent and green). Amethyst also forms in veins at the same area. Apart from the silica polymorphs, the veins are accompanied by calcite and zeolites. The main aim of this study is the characterization of the silica polymorphs. Using FT-IR analyses, variations in the crystal structure of the three opals were recognized. The green opal is found to be more amorphous than the other two types. Fluid-inclusion measurements were performed in calcite and were compared with amethyst from previous studies. The Th is between 121-175 °C and the Te between -22.9 and -22.4 °C. The salinities range from 0.9 to 4.5 wt % NaCl equiv.


2001 ◽  
Vol 34 (3) ◽  
pp. 1015 ◽  
Author(s):  
Β. ΜΕΛΦΟΣ ◽  
Π. ΒΟΥΔΟΥΡΗΣ ◽  
Κ. ΑΡΙΚΑΣ ◽  
Μ. ΒΑΒΕΛΙΔΗΣ

The present study correlates both the mineralogy of the hydrothermal alteration and the mineral chemistry of molybdenites from three porphyry Mo ± Cu occurrences in Thrace: Melitena, Pagoni Rachi/Kirki and Ktismata/ Maronia. The mineralisations are genetically related to calcalkaline, subvolcanic bodies of Tertiary age. According to their mineralogical and chemical composition the host rocks are characterized as dacite (Melitena), dacitic andésite (Pagoni Rachi) and porphyry microgranite (Ktismata/Maronia). The molybdenites occur in disseminated form, as fracture fillings, as well within quartz stockworks crosscuting the central alteration zones of the intrusives. They are accompanied by the following mineral assemblages: quartz, sericite, pyrophyllite, diaspore, Ca-Ba-rich alunite, pyrite (Melitena); quartz, albite/K-feldspar, biotite, actinolite, magnetite (Pagoni Rachi); and sericite, kaolinite, pyrophyllite, chlorite (Ktismata). Preliminary microthermometric results showed homogenisation temperatures from 352° to 390 °C for Pagoni Rachi area and from 295° to 363 °C for Melitena area. The salinities range between 4.5 and 6.1 wt% eq. NaCl and between 2.7 and 3.4 wt% eq. NaCl, respectively. Detailed study on over 400 fluid inclusions from the porphyry Cu-Mo deposit in Maronia area revealed formation temperatures from 300° to 420 °C, whereas salinities are distincted in two different groups from 6 to 16 wt% eq. NaCl and from 28 to 55 wt% eq. NaCl. The chemical composition of the molybdenites from the three porphyry Mo±Cu deposits in Thrace was studied with 155 microprobe analyses. The results revealed unusual high and variable Re concentrations in the studied molybdenites. Re content in molybdenite from Melitena area vary from 0.21 to 1.74 wt%, 0.79 wt% on average. The highest values were measured in samples from Pagoni Rachi (0.45-4.21 wt%, 1.98 wt% on average). Finally, microprobe analyses from molybdenite in Ktismata/Maronia showed Re content between 0.12 and 2.88 wt% (0.76 wt% on average). Rhenium is a very rare element with many definite uses, and is mainly associated with molybdenite in porphyry type deposits. According to the data published so far the Re content in molybdenite reaches up to 0.42 wt%. It is obvious therefore that such high Re concentrations (0.12 to 4.22 wt%) from the studied molybdenites in Thrace, are very ineresting for a possible future exploitation.


2020 ◽  
Author(s):  
S. Grignola ◽  
S. Hagemann ◽  
A.S. Fogliata ◽  
J. Miller ◽  
F. Jourdan ◽  
...  

Abstract New geochronological data provide evidence for Permo-Triassic low-sulfidation epithermal gold-silver mineralization in the Cordillera Frontal, Argentina. The U-Pb sensitive high-resolution ion microprobe (SHRIMP) analyses on zircons and titanite gave the following results: (1) andesite and rhyolite volcanic host rocks of the Casposo Au-Ag deposit yielded a range of ages between 267.1 ± 0.7 and 241.7 ± 2.2 Ma; (2) two composite plutons located near Casposo yielded ages of 268.2 ± 1.5 and 265.1 ± 1.5 Ma for the Colorado syenogranite-granite pluton and 266.6 ± 1.4 and 254.0 ± 2.4 Ma for the Casposo granodiorite-tonalite pluton; (3) a trachyan-desite dike emplaced at 265.7 ± 1.2 Ma that is crosscut by mineralized quartz-adularia-calcite-gold veins in the Kamila East area; (4) felsite intrusions, interpreted to be temporally related to the emplacement of mineralized veins at 261.1 ± 3.5 Ma; and (5) composite rhyolite/andesite dikes that crosscut all other lithostratigraphic units and mineralized veins at 238.4 ± 1.6 Ma. The 40Ar/39Ar dates on hydrothermal adularia within quartz-adularia-calcite-gold veins of the Casposo deposit revealed at least three, likely discreet, hydrothermal fluid pulses and associated periods of vein formation during extensional events between 280–274, 262–258, and 250–246 Ma. Relative and absolute timing of volcanic host rocks, plutons, postmineralization felsic dikes, and gold-bearing veins of the Casposo epithermal vein system suggest the presence of significant Permian (Cisuralian)-Lower Triassic low-sulfidation epithermal-style gold-silver mineralization at the eastern flank of the Cordillera Principal in Argentina. The existence of this epithermal Au-Ag system opens the potential for a significant magmatic-hydrothermal system in a part of the Andes that previously was considered to be of low prospectivity.


2020 ◽  
Vol 120 ◽  
pp. 103228 ◽  
Author(s):  
Na Guo ◽  
Wenbo Guo ◽  
Weixin Shi ◽  
Yiru Huang ◽  
Yanan Guo ◽  
...  

1989 ◽  
Vol 26 (10) ◽  
pp. 2106-2115 ◽  
Author(s):  
J. V. Gregory Lynch

Kalzas is a sheeted vein and stockwork wolframite deposit, crosscutting continental margin sedimentary rocks of the Proterozoic Windermere Supergroup in central Yukon. Mineralization is synchronous with Cretaceous post-tectonic granites of the Selwyn Plutonic Suite.Parallel sets of planar quartz veins contain coarse euhedral wolframite and are generally oriented perpendicular to southeast-plunging fold axes. Widespread alteration of the host rocks and intense stockwork veining surround the veins. Alteration and mineralization show a distinct concentric zonation across a 2.5 km long southeast-trending oval. The core zone is characterized by orthoclase contained within quartz–tourmaline–wolframite veins. Minor phases include apatite, molybdenite, bismuthinite, pyrite, chalcopyrite, and pyrrhotite. Host rocks are prevasively tourmalinized and sericitized. Hydrothermal alteration here at the core of the system overprints early biotitization of the host rocks. The biotitization appears to have been the result of earlier contact metamorphism from a hidden pluton situated beneath the deposit that converted the chloritic groundmass of the metasediments to biotite. At the fringe of wolframite mineralization, cassiterite occurs with quartz, muscovite, and tourmaline, whereas orthoclase is distinctly lacking. The outer periphery of the concentrically zoned sequence features pervasive sericitization, disseminated pyrite, and the disappearance of tourmaline. Here, quartz veins are barren except for minor galena.Three main stages mark the mineralogical evolution of the deposit: (1) early biotitization of the chloritic host rocks in the core area; (2) quartz-dominated veining with internally complex timing relations, hydrothermal alteration, and zoning; and (3) carbonate veining and replacement of wolframite by scheelite.Fluid inclusions within quartz are dominated by H2O and contain variable amounts of CO2 as well as minor CH4 and NaCl. The CO2 content ranges from approximately 0 to 6 mol%. The fluids are generally dilute but locally contain as much as 7 wt.% NaCl equivalent. Homogenization temperatures are variable: for quartz, 160–340 °C; for cassiterite, 280–350 °C; and for apatite, 220–360 °C. Minimum hydrothermal pressures at the time of mineralization are estimated to have been in the range 300–600 bar (1 bar = 100 kPa). Fluctuations in pressure with cooling appear to have resulted in CO2 immiscibility and the formation of late-stage carbonates at the termination of hydrothermal activity.


2003 ◽  
Vol 40 (12) ◽  
pp. 1789-1804 ◽  
Author(s):  
William A Turner ◽  
Larry M Heaman ◽  
Robert A Creaser

The Mallery Lake area contains precious metal-bearing quartz–chalcedony stockworks that are pristine examples of ancient low-sulfidation epithermal deposits. Fluorite extracted from these epithermal deposits define a Sm–Nd errorchron age of 1434 ± 23 Ma mean square of weighted deviates (MSWD) = 4.8. This date is interpreted to have age significance because (1) a simple linear trend does not exist between the 143Nd/144Nd ratios of the fluorite with respect to their 1/Nd concentrations as would be expected for mixing of two geochemical end members; (2) microthermometric studies indicate that the fluorite analysed in this study has an intimate association with a single high-salinity, calcic brinal fluid; and (3) the age determined from seven fluorite samples extracted from a single outcrop location yielded an identical age result (1434 ± 60 Ma; MSWD = 5.5) compared to the fluorite composite. Rhyodacites of the Pitz Formation and syenites from the Nueltin suite (intrusive equivalent to the rhyodacites) are the youngest volcanic–plutonic rocks that are observed in outcrop in the Mallery Lake area, and they were dated by U–Pb zircon analysis at 1760 ± 43 Ma and 1755.4 ± 1.8 Ma, respectively. The ~320 million year age difference between the epithermal deposits and the hosting rhyodacitic flows suggests that the epithermal stockworks may have formed by a regional hydrothermal event unrelated to this earlier Paleoproterozoic volcanic activity. Uranium deposits in the Thelon and Athabasca basins, to the northwest and south of the Baker Lake Basin, were determined to have similar ore emplacement ages with no evident heat source.


Minerals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 472 ◽  
Author(s):  
Torres ◽  
Melgarejo ◽  
Torró ◽  
Camprubí ◽  
Castillo-Oliver ◽  
...  

The tin-rich polymetallic epithermal deposit of Poopó, of plausible Late Miocene age, is part of the Bolivian Tin Belt. As an epithermal low sulfidation mineralisation, it represents a typological end-member within the “family” of Bolivian tin deposits. The emplacement of the mineralisation was controlled by the regional fault zone that constitutes the geological border between the Bolivian Altiplano and the Eastern Andes Cordillera. In addition to Sn and Ag, its economic interest resides in its potential in critical elements as In, Ga and Ge. This paper provides the first systematic characterisation of the complex mineralogy and mineral chemistry of the Poopó deposit with the twofold aim of identifying the mineral carriers of critical elements and endeavouring to ascertain plausible metallogenic processes for the formation of this deposit, by means of a multi-methodological approach. The poor development of hydrothermal alteration assemblage, the abundance of sulphosalts and the replacement of löllingite and pyrrhotite by arsenopyrite and pyrite, respectively, indicate that this deposit is ascribed to the low-sulphidation subtype of epithermal deposits, with excursions into higher states of sulphidation. Additionally, the occurrence of pyrophyllite and topaz has been interpreted as the result of discrete pulses of high-sulphidation magmatic fluids. The δ34SVCDT range in sulphides (−5.9 to −2.8‰) is compatible either with: i. hybrid sulphur sources (i.e., magmatic and sedimentary or metasedimentary); or ii. a sole magmatic source involving magmas that derived from partial melting of sedimentary rocks or underwent crustal assimilation. In their overall contents in critical elements (In, Ga and Ge), the key minerals in the Poopó deposit, based on their abundance in the deposit and compositions, are rhodostannite, franckeite, cassiterite, stannite and, less importantly, teallite, sphalerite and jamesonite.


1997 ◽  
Vol 88 (4) ◽  
pp. 225-243
Author(s):  
Gawen R. T. Jenkin ◽  
Paul Mohr ◽  
John G. Mitchell ◽  
Anthony E. Fallick

AbstractThe causes of hydrothermal alteration in dolerite dykes intruding Caledonian rocks of W Connacht are investigated using stable isotope, water content and K–Ar data for whole rocks and mineral separates. Using an isochron approach the Logmór dyke in the north is re-dated to 308±4 Ma; previously determined older whole-rock ages reflect excess 40Ar. The ∼ 305 Ma age previously proposed for the Teach Dóite suite in the south is reinforced by a 305 Ma age on a pyroxene separate, although the severe resetting of most samples is emphasised by other pyroxene and plagioclase ages of ∼210 Ma. Pyroxene δ18O values for these Upper Carboniferous dykes are mostly 5·5 to 6·1%, indicating negligible crustal contamination. Logmór whole-rock samples have water contents of 1·7–2·1 wt.%, δ5D= 59 to –47‰ and δ18O = 9·4 to 9·6‰; plagioclase shows little mineralogical alteration but its δ18O is 9·7‰. Hydrothermal alteration involving a local formation or metamorphic water took place at high fluid/rock ratios and high temperature during cooling after intrusion, most probably in a thermally-driven convection system. Teach Dóite dykes have water contents of 2·0–4·2 wt.%. δD= –58 to –38‰ and δ18O = 3·6 to 9·2‰, and were mostly altered in two stages; hydration upon intrusion to ∼ 2 wt.% water by contemporaneous meteoric water at low fluid/rock ratios was followed by extensive chemical and isotopic alteration at ∼210 Ma (Upper Triassic) by surface waters. This latter event could also have caused the extensive alteration observed in the host rocks.


Sign in / Sign up

Export Citation Format

Share Document