scholarly journals Geology and Mineralogy of Rare Earth Elements Deposits and Occurrences in Finland

Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 356 ◽  
Author(s):  
Thair Al-Ani ◽  
Ferenc Molnár ◽  
Panu Lintinen ◽  
Seppo Leinonen

Rare earth elements (REE) have critical importance in the manufacturing of many electronic products in the high-tech and green-tech industries. Currently, mining and processing of REE is strongly concentrated in China. A substantial growth in global exploration for REE deposits has taken place in the recent years and has resulted in considerable advances in defining new resources. This study provides an overview of the mineralogical and petrological peculiarities of the most important REE prospects and metallogeny of REE in Finland. There is a particularly good potential for future discoveries of carbonatite hosted REE deposits in the Paleozoic Sokli carbonatite complex, as well as in the Paleoproterozoic Korsnäs and Kortejärvi Laivajoki areas. This review also provides information about the highest known REE concentration in the alkaline intrusions of Finland in the Tana Belt and other alkaline rock hosted occurrences (e.g., Otanmäki and Katajakangas). Significant REE enrichments in hydrothermal alteration zones are also known in the Kuusamo Belt (Uuniniemi and Honkilehto), and occurrences of REE-rich mineralisation are also present in granite pegmatite bodies and greisens in central and southern Finland (Kovela monazite granite and the Rapakivi Granite batholith at Vyborg, respectively). REE minerals in all of the localities listed above were identified and analyzed by scanning electron microscopy (SEM) and electron microprobes (EMPs). In localities of northern and central Finland, both primary rock forming and epigenetic-hydrothermal REE minerals were found, namely phosphates (monazite-Ce, xenotime-Y), fluorcarbonates (bastnäsite-Ce, synchysite), and hydrated carbonates (ancylite-Ce), hydrated aluminium silicates (allanite-Ce, Fe-allanite, cerite, chevkinite), oxides (fergusonite, euxenite) and U-Pb rich minerals. The chondrite normalized REE concentrations, the La/Nd ratios and the REE vs. major element contents in several types of REE bearing minerals from prospects in Finland can be used to identify and define variable REE fractionation processes (carbonatites), as well as to discriminate deposits of different origins.

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 164
Author(s):  
Kenneth N. Han

Rare earth elements (REEs) have become an important group of metals used in many high-tech industries, including high-strength magnets, plasma TVs, various military applications, and clean and efficient green energy industries [...]


2020 ◽  
Vol 34 (2) ◽  
pp. 183-194
Author(s):  
Alexandre Chaves ◽  
Luiz Knauer

The hematitic phyllite is a rock that occurs in the São João da Chapada and Sopa-Brumadinho formations of the southern Espinhaço range. Its origin is widely discussed in papers on Espinhaço, but there is no consensus on its protolith due to certain characteristics of the lithotype, such as its chemical composition and textural features. The pattern of rare earth elements strongly enriched [(La/Yb)N 6.80-17.68], with light rare earth elements [(La/Sm)N 2.54-4.83] richer than heavy ones [(Gd/Yb)N 1.28-3,32], suggests that the protolith was an alkaline volcanic rock formed during the rift that generated the Espinhaço basin. The major elements indicate that the alkaline rock met weathering processes, becoming a regolith. During the Brasiliano metamorphism, it finally became hematitic phyllite. Other characteristics of the lithotype, such as the presence of sericite-bearing rounded parts (possibly formed by alteration and deformation of leucite crystals) and the preservation of igneous layering, suggest a potassic volcanic origin for hematitic phyllite. In diagram that allows identifying altered and metamorphic volcanic rocks, the investigated samples have composition similar to a feldspathoid-rich alkali-basalt, probably a leucite tephrite, a leucitite or even a lamproite, rocks from mantle source.


2021 ◽  
Vol 315 ◽  
pp. 02004
Author(s):  
Tatiana Cherkasova ◽  
Anastasia Tikhomirova ◽  
Elizaveta Cherkasova ◽  
Andrey Golovachev

In the context of restrictions due to the sanctions imposed, a key factor in the country's development is the development of new Russian high-tech materials and their production technologies. The study of ash and slag waste from the Kemerovo State District Power Plant was carried out in this work using the methods of inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). It has been established that matrix elements make up the predominant share of ash and slag waste. Rare and rare earth elements in terms of their content are classified as trace elements, however, some of them either have commercial values, or are close to it.


2018 ◽  
Vol 149 ◽  
pp. 01092
Author(s):  
B. Belqat ◽  
S. Belcadi

Many kinds of rare earth elements (REE) such as europium and cerium have been make them essential elements in many high-tech components. The electrochemical studies can be presented as an interesting indication for europium and cerium extraction from phosphoric solutions, including solvation and complexation reactions. The normal redox potentials of Eu3+/Eu2+ and Ce4+/Ce3+ systems have been determined in H3PO4-H2O media with various phosphoric acid concentration. The solvation of these elements in phosphoric media is characterized by their transfer activity coefficients "f" calculated from the corresponding normal redox potentials. The corresponding solvation increases with increasing the H3PO4 concentration. For each REE, the electrochemical properties depend on its number of charges and on its basic properties. Results suggest that solvation and complexation of REE phosphates are important in controlling REE concentration.


10.30544/507 ◽  
2020 ◽  
Vol 26 (2) ◽  
pp. 143-162
Author(s):  
Corby Gerard Anderson ◽  
Paul J Miranda

Hoidas Lake lies in the Northern Rae Geological Province, in the general vicinity of many of Saskatchewan's large uranium mines. The mineralogy of the Hoidas Lake rare-earth deposit differs from most other such deposits in that it is hosted in equal abundance in veins containing apatite and allanite mineral groups. Hoidas Lake also differs from other deposits in that it contains a significant amount of heavy rare-earth elements, such as dysprosium. This abundance of heavy Rare Earth Elements (REE’s) is significant, as there is a growing demand for the heavier rare earths in high-tech manufacturing (such as the use of dysprosium in the manufacturing of hybrid car components). Recently, metallurgical testing was performed on a Hoidas Lake REE deposit composite. These investigations included characterization, flotation testing, heavy media separation, magnetic separation testing, whole ore leaching studies, bond work index grindability testing, and relative abrasion index testing. This paper summarizes this research effort.


Author(s):  
V. Mykhailov ◽  
M. Kurilo ◽  
S. Kosharna

Changes in the priority areas of financing in the field of subsurface use and their widespread reorientation to the search for alternative sources of raw materials which could ensure the development of modern high-tech industries are the promising direction for the country's growth in sustainable development conditions and Green Energy Transition. And at the moment the only resource that can ensure safe progress in the future and plays an important role in today's technological development is rare earth elements (REE). Within the framework of this study information on the current state of awareness about the REE mining prospects in Ukraine was analyzed and generalized; the systematization and updating of available data on quantitative and qualitative REE ore occurrences and deposits characteristics and their geological and industrial parameters was done; the main obstacles / barriers to the active mining development on these objects of potential extraction were identified. The obtained ranking results of domestic deposits and REE manifestations prove the expediency of investing in geological exploration and mining operations conducted in certain areas, which are identified as the most attractive for further industrial development and generally emphasize the prospects of the studied area and justify the need in intensification of selected rare earth objects field development.


2021 ◽  
Vol 17 (1) ◽  
pp. 96-102
Author(s):  
Олександр Пономаренко ◽  
Анатолій Самчук ◽  
Катерина Вовк ◽  
Ольга Заяць ◽  
Ірина Кураєва

Introduction. To date, rare earth elements (REE) are used to manufacture most high-tech goods and are crucial in defense technologies (lasers, radars, and electromagnetic weapons), nuclear engineering, metallurgy, and others. All this determines the relevance of their study to assess the rare earth mineral resource base of Ukraine. Problem Statement. The determination of REE in rocks and minerals is a fundamental problem in geochemistry and petrology for understanding the processes of rock formation. However, it is a complex analytical task related to the similar chemical properties of these elements, which are caused by the "lanthanide compression effect". Purpose. The purpose is to develop analytical technologies for determining REE content by the ICP-MS method, to evaluate their content and distribution in granitoids of the Ukrainian Shield. Materials and Methods. The hybrid method of ICP-MS analysis and microwave decomposition of rocks and minerals has been used to measure the REE content. This technique has been tested and used to estimate the content and distribution of REE in fluorites and rare-metal granitoids of the Rusko-Polyanskyi massif of the Korsun-Novomirgorod pluton of the Ukrainian Shield. Results. Analytical technologies for determination of REE in granites and minerals have been developed. The method for determining REE in fluorites and granites without their prior concentration in the range from 0.01 to 1000 ppm with a relative standard deviation of 0.01–0.10 has been described. The content of rare earth elements in the Rusko-Polianskyi granites increases (218–797 g/t), the main concentrator of these elements is fluorite (692–26933 g/t REE). An inverse relationship has been observed between the REE content in fluorites and granites. Conclusions. The developed analytical technologies are the basis for establishing quality assessment criteria and developing principles for the rational use of rare-earth granitoids to create a rare-earth mineral resource base in Ukraine.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4710
Author(s):  
Yunhu Hu ◽  
Mu You ◽  
Guijian Liu ◽  
Zhongbing Dong ◽  
Facun Jiao ◽  
...  

Strategically critical elements are becoming significant for the rising demand of emerging energy-efficient technologies and high-tech applications. These critical elements are mostly geologically dispersed, and mainly recovered from recycled materials. Coal with high concentrations of critical elements is supposed to stable alternative sources. The abundances of critical elements in coal varies widely among different deposits and regions. The high concentrations of critical elements are found in many Chinese and Russian coal ores. The global mining potential ratio (MPR) is applied and suggests scandium, hafnium, cesium, yttrium, germanium, gallium, thallium, strontium and rare-earth elements could be potential recovery from coal. A number of benefits are expected with the extraction of critical elements during coal utilization.


Sign in / Sign up

Export Citation Format

Share Document