scholarly journals GEOLOGICAL INDUSTRIAL ASSESSMENT AND RANKING OF PROMISING OBJECTS OF THE DOMESTIC BASE OF RARE EARTH ELEMENTS

Author(s):  
V. Mykhailov ◽  
M. Kurilo ◽  
S. Kosharna

Changes in the priority areas of financing in the field of subsurface use and their widespread reorientation to the search for alternative sources of raw materials which could ensure the development of modern high-tech industries are the promising direction for the country's growth in sustainable development conditions and Green Energy Transition. And at the moment the only resource that can ensure safe progress in the future and plays an important role in today's technological development is rare earth elements (REE). Within the framework of this study information on the current state of awareness about the REE mining prospects in Ukraine was analyzed and generalized; the systematization and updating of available data on quantitative and qualitative REE ore occurrences and deposits characteristics and their geological and industrial parameters was done; the main obstacles / barriers to the active mining development on these objects of potential extraction were identified. The obtained ranking results of domestic deposits and REE manifestations prove the expediency of investing in geological exploration and mining operations conducted in certain areas, which are identified as the most attractive for further industrial development and generally emphasize the prospects of the studied area and justify the need in intensification of selected rare earth objects field development.

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 164
Author(s):  
Kenneth N. Han

Rare earth elements (REEs) have become an important group of metals used in many high-tech industries, including high-strength magnets, plasma TVs, various military applications, and clean and efficient green energy industries [...]


Author(s):  
Kathryn M. Goodenough ◽  
Eimear A. Deady ◽  
Charles D. Beard ◽  
Sam Broom-Fendley ◽  
Holly A. L. Elliott ◽  
...  

AbstractThe rare earth elements (REE) are critical raw materials for much of modern technology, particularly renewable energy infrastructure and electric vehicles that are vital for the energy transition. Many of the world’s largest REE deposits occur in alkaline rocks and carbonatites, which are found in intracontinental, rift-related settings, and also in syn- to post-collisional settings. Post-collisional settings host significant REE deposits, such as those of the Mianning-Dechang belt in China. This paper reviews REE mineralisation in syn- to post-collisional alkaline-carbonatite complexes worldwide, in order to demonstrate some of the key physical and chemical features of these deposits. We use three examples, in Scotland, Namibia, and Turkey, to illustrate the structure of these systems. We review published geochemical data and use these to build up a broad model for the REE mineral system in post-collisional alkaline-carbonatite complexes. It is evident that immiscibility of carbonate-rich magmas and fluids plays an important part in generating mineralisation in these settings, with REE, Ba and F partitioning into the carbonate-rich phase. The most significant REE mineralisation in post-collisional alkaline-carbonatite complexes occurs in shallow-level, carbothermal or carbonatite intrusions, but deeper carbonatite bodies and associated alteration zones may also have REE enrichment.


2021 ◽  
Vol 315 ◽  
pp. 02004
Author(s):  
Tatiana Cherkasova ◽  
Anastasia Tikhomirova ◽  
Elizaveta Cherkasova ◽  
Andrey Golovachev

In the context of restrictions due to the sanctions imposed, a key factor in the country's development is the development of new Russian high-tech materials and their production technologies. The study of ash and slag waste from the Kemerovo State District Power Plant was carried out in this work using the methods of inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). It has been established that matrix elements make up the predominant share of ash and slag waste. Rare and rare earth elements in terms of their content are classified as trace elements, however, some of them either have commercial values, or are close to it.


2021 ◽  
Vol 20 (4) ◽  
pp. 641-665
Author(s):  
A.A. Chursin ◽  
◽  
A.V. Yudin ◽  
P.Yu. Grosheva ◽  
◽  
...  

The relevance of the research topic is due to the need to strengthen and expand the technological transformation of the Russian economy, which should contribute to the growth of high-tech products production and increase the competitiveness of domestic manufacturers in the world market. The hypothesis of the study is that the component features of the intellectual capital of the industrial region determine the predisposition/absence of predisposition of its economy to make a transition to a new dominant technological structure. The purpose of the scientific research is to identify the types of intellectual capital and which of them form the predisposition of regions to the technological transformation of their economies. During the study, the following tasks were solved: structural elements of intellectual capital that affect the innovative and technological development of the region, namely: education, are justified; innovative competencies; innovative skills; altruism; cognitive and non-cognitive competencies; sensitivity to change and adaptation to technological changes. Extractive, mono-inclusive and multi-inclusive type of intellectual capital of industrial regions, corresponding to the fourth, fifth and sixth technological framework, respectively, is disclosed. A methodology for estimating intellectual capital, which determines the dominant technological structure of the economy of the industrial region, has been developed on the basis of the use of the matrix method and Frobenius norms, which make it possible to conduct research over a long-time interval taking into account the dynamic trends of the main capital elements. The testing of the author's methodology revealed that such territories as Kemerovo Region, Nizhny Novgorod Region, Perm Territory, Republic of Bashkortostan, Republic of Tatarstan, Sverdlovsk Region, Udmurt Republic, Chelyabinsk Region, Chuvash Republic and Yaroslavl Region have intellectual capital for further technological development of the region's economy. The novelty of the obtained results lies in the development of a typology of regions, which enables one to identify the territories most prone to further technological transformation of the economy in the context of types of intellectual capital. The practical significance of the results obtained lies in the possibility of their use by authorities as a tool for developing a strategy for industrial development and structural adjustment of the economy of industrial regions.


2021 ◽  
Vol 63 (4) ◽  
pp. 477-483
Author(s):  
D. A. Elatontsev ◽  
A. P. Mukhachev ◽  
Yu. F. Korovin ◽  
N. D. Voloshin

2018 ◽  
Vol 56 ◽  
pp. 03024
Author(s):  
Sergei Ivannikov ◽  
Evgeniy Shamrai ◽  
Andrey Taskin ◽  
Aleksandr Yudakov

The results of an investigation of ash and slag wastes (ASW) of enterprises of the energy sector of Primorsky Krai are presented. The averaged contents of the main elements and mineral complexes in Primorsky Krai are given. It is shown that the mineral composition of the ASW data makes it possible to separate the primary raw materials into fractions with different compositions. A scheme is proposed for dividing the initial ash extractors into separate mineral fractions by the particle size and by their physical properties. The predominant concentration of gold, platinum, rare earth elements (REE) and a number of other valuable components in the heavy non-magnetic fraction isolated from the primary ASW was detected. Almost complete absence of gold, noble metals and REE in underburning of coal, magnetic and micro-dispersed fractions of ASW has been demonstrated. A device was offered for complex processing of ash and slag wastes of enterprises of the power industry of Primorsky Krai, which makes it possible to divide the initial ASW into mineral fractions, being raw materials for various industries.


Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 131 ◽  
Author(s):  
Lisa Brückner ◽  
Tobias Elwert ◽  
Thomas Schirmer

Rare earth-bearing gypsum tailings from the fertilizer industry are a potential source for an economically viable and sustainable production of rare earth elements. Large quantities are generated inter alia in Catalão, Brazil, as a by-product in a fertilizer production plant. Hitherto, the gypsum has been used as soil conditioner in agriculture or was dumped. The cooperative project, “Catalão Monazite: Economical exploitation of rare earth elements from monazite-bearing secondary raw materials,” intends to extract rare earth elements from these gypsum tailings. In this paper, a chemical process route to obtain a mixed rare earth carbonate from a monazite concentrate, was investigated. The results of the digestion, leaching, and precipitation experiments are presented and discussed herein. This includes reagent choice, process parameter optimization through experimental design, mineralogical characterization of the feed material and residues, purification of the leach solution, and precipitation of the rare earth as carbonates. The results showed that a rare earth extraction of about 90% without the mobilization of key impurities is possible during a sulfuric acid digestion with two heating stages and subsequent leaching with water. In the following purification step, the remaining impurities were precipitated with ammonium solution and the rare earth elements were successfully recovered as carbonates with a mixture of ammonium solution and ammonium bicarbonate.


2019 ◽  
Vol 108 ◽  
pp. 02011
Author(s):  
Karolina Kossakowska ◽  
Katarzyna Grzesik

Rare Earth Elements (REEs) are identified as critical raw materials for the European Union economy. REEs are not currently produced in the EU, while there are several sources not properly addressed. Within the ENVIREE project tailings from New Kankberg (Sweden) and Covas (Portugal) were identified as rich in REEs and chosen for recovery processing. The Life Cycle Assessment (LCA) methodology was used to evaluate the environmental impact of REEs recovery. The aim of this study is the detailed analysis of several scenarios with different electricity production schemes of REE recovery. The study discusses the share of energy use in the overall impact on the environment, taking into account diversification in the electricity production structure among EU countries. The energy use is a significant contributor to the overall environmental impact of studied cases. Its share in the total environmental burden is reaching up to 47%. The results show that applying the average electricity scheme production for Europe may lead to biased LCA results. For the accurate LCA results the local production schemes of energy for certain countries should be chosen.


2018 ◽  
Vol 41 ◽  
pp. 04001
Author(s):  
Michal Cehlár ◽  
Zou Liang ◽  
Lian Wan ◽  
Khanindra Madauri ◽  
Sergey Krysin

The importance of the natural resource and environmental factors in the development of the modern economy is becoming more important in the context of energy security and the quality of economic growth. This is also due to the fact that the state’s policy in increasing GDP has been adjusted to a qualitative social-and-economic development. In this regard, the quantitative measurement of the quantity and quality ratio of economic growth is relevant. The rise of the global economy as a whole and its individual territories is due to both a high-tech breakthrough and the development of raw materials industries – oil, gas, coal and metallurgy. Currently, to meet the needs of society in natural resources, environmental goods and services, ever-increasing costs are required for expanded reproduction of the mineral resource base and compensation for negative consequences resulting from the degradation of ecological systems and pollution of the natural environment.


2018 ◽  
Vol 149 ◽  
pp. 01092
Author(s):  
B. Belqat ◽  
S. Belcadi

Many kinds of rare earth elements (REE) such as europium and cerium have been make them essential elements in many high-tech components. The electrochemical studies can be presented as an interesting indication for europium and cerium extraction from phosphoric solutions, including solvation and complexation reactions. The normal redox potentials of Eu3+/Eu2+ and Ce4+/Ce3+ systems have been determined in H3PO4-H2O media with various phosphoric acid concentration. The solvation of these elements in phosphoric media is characterized by their transfer activity coefficients "f" calculated from the corresponding normal redox potentials. The corresponding solvation increases with increasing the H3PO4 concentration. For each REE, the electrochemical properties depend on its number of charges and on its basic properties. Results suggest that solvation and complexation of REE phosphates are important in controlling REE concentration.


Sign in / Sign up

Export Citation Format

Share Document