scholarly journals Carbon Sources and the Graphitization of Carbonaceous Matter in Precambrian Rocks of the Keivy Terrane (Kola Peninsula, Russia)

Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 94 ◽  
Author(s):  
Ekaterina Fomina ◽  
Evgeniy Kozlov ◽  
Kirill Lokhov ◽  
Olga Lokhova ◽  
Vladimir Bocharov

The Precambrian rocks of the Keivy Terrane reveal five types of carbonaceous matter (CM): Fine-grained, flaky, nest, vein, and spherulitic. These types differ in their distribution character, carbon isotope composition, and graphitization temperatures calculated by the Raman spectra of carbonaceous material (RSCM) geothermometry. Supracrustal rocks of the Keivy Terrane contain extremely isotopically light (δ13CPDB = –43 ± 3‰) carbon. Presumably, its source was a methane–aqueous fluid. According to temperature calculations, this carbon matter and the host strata underwent at least two stages of metamorphism in the west of the Keivy Terrane and one stage in the east. The CM isotope signatures of several samples of kyanite schists (δ13CPDB = –33 ± 5‰) are close to those of oils and oil source rocks, and they indicate an additional carbon reservoir. Thus, in the Keivy territory, an oil-and-gas bearing basin has existed. Heavy carbon (δ13CPDB = −8 ± 3‰) precipitated from an aqueous CO2-rich fluid is derived from either the lower crust or the mantle. This fluid probably migrated from the Keivy alkaline granites into the surrounding rocks previously enriched with “methanogenic” carbon.

Author(s):  
Sara LIFSHITS

ABSTRACT Hydrocarbon migration mechanism into a reservoir is one of the most controversial in oil and gas geology. The research aimed to study the effect of supercritical carbon dioxide (СО2) on the permeability of sedimentary rocks (carbonates, argillite, oil shale), which was assessed by the yield of chloroform extracts and gas permeability (carbonate, argillite) before and after the treatment of rocks with supercritical СО2. An increase in the permeability of dense potentially oil-source rocks has been noted, which is explained by the dissolution of carbonates to bicarbonates due to the high chemical activity of supercritical СО2 and water dissolved in it. Similarly, in geological processes, the introduction of deep supercritical fluid into sedimentary rocks can increase the permeability and, possibly, the porosity of rocks, which will facilitate the primary migration of hydrocarbons and improve the reservoir properties of the rocks. The considered mechanism of hydrocarbon migration in the flow of deep supercritical fluid makes it possible to revise the time and duration of the formation of gas–oil deposits decreasingly, as well as to explain features in the formation of various sources of hydrocarbons and observed inflow of oil into operating and exhausted wells.


2013 ◽  
Vol 295-298 ◽  
pp. 2732-2735
Author(s):  
Yan Yun Zhang ◽  
Zi Nan Li ◽  
Lu Lu Zhou

In order to clarify some kinds of geological conditions on the hydrocarbon accumulation process, this paper analyses the main factors controlling oil-gas enrichment regularities of Putaohua oil layer in Chaochang region of Daqing city, which conclude tectonics, sedimentary characteristics, oil source condition and the mutual relationship between of them. The results show that the organic abundance of hydrocarbon source rocks of Qing1 section control oil and gas distribution range. The configuring relationships of oil-source fault and reservoir sand body control oil and gas migration. The configuring relationship of sedimentary micro-facies types and structures controls oil and gas distribution. On the basis of these studies, oil and gas accumulation mode in Putaohua reservoir are summarized in Chaochang region. There are two accumulation models: nearby accumulation mode in northwest and updip accumulation mode in southeast.


1967 ◽  
Vol 67 ◽  
pp. 1-41
Author(s):  
E Bondesen ◽  
K.R Pedersen ◽  
O Jørgensen

The geological setting of organic remnants from well preserved Ketilidian rocks of SW Greenland is presented. The absolute age (2000? m. y.) of the rocks is discussed and compared to that of other regions. Many types of organic remnants have been found in these low-metamorphic rocks. Most of the organic remnants are microscopic globules and fragments with cell-like structures. The type which is best preserved is a complex globular structure on about 1/2mm in diameter. This structure is established as a new monotypic form genus Vallenia erlingi (Raunsgaard Pedersen) n. gen. et sp. Stromatolithes and other macro-structures of possible organic origin are also found. A coal-graphite layer indicates that large-scale accumulation of organic matter has taken place. The organic remnants are so well preserved that it has been possible to extract small amounts of paraffines (n-C11 to n-C31 with maximum about n-C18 to n-C20) and other organic compounds. The carbon-isotope composition from carbonaceous matter and carbonates from a number of samples has been determined. The analytical procedure is described. The result of this investigation shows δ C13-values which indicate that the carbonaceous material is probably of organic origin.


1984 ◽  
Vol 24 (1) ◽  
pp. 42
Author(s):  
K. S. Jackson D. M. McKirdy ◽  
J. A. Deckelman

The Proterozoic to Devonian Amadeus Basin of central Australia contains two hydrocarbon fields — oil and gas at Mereenie and gas at Palm Valley, both within Ordovician sandstone reservoirs. Significant gas and oil shows have also been recorded from Cambrian sandstones and carbonates in the eastern part of the basin. The hydrocarbon generation histories of documented source rocks, determined by Lopatin modelling, largely explain the distribution of the hydrocarbons. The best oil and gas source rocks occur in the Ordovician Horn Valley Siltstone. Source potential is also developed within the Late Proterozoic sequence, particularly the Gillen Member of the Bitter Springs Formation, and the Cambrian.Consideration of organic maturity, relative timing of hydrocarbon generation and trap formation, and oil/source typing leads to the conclusion that the Horn Valley Siltstone charged the Mereenie structure with gas and oil. At Palm Valley, only gas and minor condensate occur because the trap was formed too late to receive an oil charge. Differences in organic facies may also, in part, account for the dry gas and lack of substantial liquid hydrocarbons at Palm Valley. In the eastern Amadeus Basin, the Ordovician is largely absent but Proterozoic sources are well placed to provide the gas discovered by Ooraminna 1 and Dingo 1. Any oil charge here would have preceded trap development.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Kaixun Zhang ◽  
Xinxin Fang ◽  
Ying Xie ◽  
Shun Guo ◽  
Zhenwang Liu ◽  
...  

Diagenesis is one of the most predominant factors controlling reservoir quality in the deeply buried siliciclastic sandstones of the third member in the Eocene Shahejie Formation (Es3), in the Raoyang Sag, the Bohai Bay Basin. In this study, thin section, cathodoluminescence (CL), scanning electron microscope (SEM), X-ray diffraction (XRD), Raman spectrum, carbon and oxygen isotopes, and fluid inclusion analyses are used to restructure paragenetic sequences and detect origins of carbonate cements recorded in this deeply buried member. Based on petrographic analyses, the Es3 sandstones are identified as lithic arkoses and feldspathic litharenites at present, but derived from original arkoses and lithic arkoses, respectively. Geohistorically, the Es3 sandstones have undergone two diagenetic episodes of eogenesis and mesogenesis. Events observed during eogenesis include chemical compaction, leaching of feldspar, development of chlorite coating and kaolinite, precipitation of the first generation of quartz overgrowth (QogI), dissolution of feldspar, and precipitation of calcite and nonferroan dolomite cement. Mesogenetic alterations include chemical compaction, precipitation of kaolinite aggregate and the second generation of quartz overgrowth (QogII), precipitation of ankerite, development of I/S and illite, and formation of pyrite. Carbon and oxygen isotopic data show that calcite cements are characterized by 13C ( δ 13 C PDB ranging from -0.7‰ to 1.0‰ with an average of 0.1‰) and 18O ( δ 18 O SMOW varying from 12.3‰ to 19.0‰ with an average of 16.2‰); these stable isotopic data combined with Z value (from 114.69 to 122.18) indicate skeletal debris ( δ 13 C PDB ranging from -1.2‰ to -1.1‰ with an average of -1.15‰; δ 18 O SMOW varying from 23.0‰ to 23.2‰ with an average of 23.1‰) and ooids in adjacent carbonate beds involved in meteoric water and seawater from outside jointly served as the carbon sources. For nonferroan dolomite, the δ 13 C PDB value of -4.1‰ is a little bit negative than the calcite, and the δ 18 O SMOW of 14.3‰ is coincident with the calcite, which suggest the nonferroan dolomites come from the diagenetic fluids with a similar oxygen isotopic composition to that of the calcite but modified by the external acidic δ 13C-depleted water. However, the ankerites are actually rich in 12C ( δ 13 C PDB ranging from -10.0‰ to -1.2‰, mean = − 4.3 ‰ ) and 16O ( δ 18 O SMOW varying from 10.1‰ to 19.4‰, mean = 14.9 ‰ ), when combined with the distribution of cutting down along the direction pointing to sand-body center from the margin and microthermometric temperature (Th’s) data mainly varying between 115.2°C and 135.5°C with an average of 96.0°C, indicating the main origination from the Es3 source rocks with effective feldspar buffer action for the acidic fluids in the margins of the Es3 sandstones. In addition, the necessary elements for ankerite such as Fe2+, Ca2+, and Mg2+ ions also come from organic matter and clay minerals during thermal maturation of the Es3 source rocks. The study provides insights into diagenetic processes and origination of carbonate cements in the Es3 sandstones; it will facilitate the cognition of predictive models of deeply buried sandstone reservoirs to some extent, which can reduce the risks involved in oil and gas exploration and development.


2021 ◽  
Author(s):  
◽  
Nils Erik Elgar

<p>The East Coast Basin of New Zealand contains up to 10,000 m of predominantly fine-grained marine sediments of Early Cretaceous to Pleistocene age, and widespread oil and gas seepages testify to its status as a petroleum province. A suite of oils and possible source rocks from the southern East Coast Basin have been analysed by a variety of geochemical techniques to determine the hydrocarbon potential and establish oil-oil and oil-source rock correlations. Results of TOC and Rock-Eval pyrolysis indicate that the latest Cretaceous Whangai Formation and Paleocene Waipawa Black Shale represent the only good potential source rock sequences within the basin. The middle to Late Cretaceous Glenburn and Te Mai formations, previously considered good potential source rocks, are organic-rich (TOC contents up to 1.30% and 1.52% respectively), but comprise predominantly Types III and IV (structured terrestrial and semi-opaque) kerogen and, therefore, have little hydrocarbon generative potential (HI values < 50). Early Cretaceous and Neogene formations are shown to have low TOC contents and have little source rock potential. The Waipawa Black Shale is a widespread, thin (< 50 m), dark brown, non-calcareous siltstone. It contains up to 1.9% sulphur and elevated quantities of trace metals. Although immature to marginally mature for hydrocarbon generation in outcrop, it is organic-rich (TOC content up to 5.69%) and contains oil and gas-prone Types II and III kerogen. The extracted bitumen comprises predominantly marine algal and terrestrial higher plant material and indicates that deposition occurred under conditions of reduced oxygen with significant anoxic episodes. The Whangai Formation is a thick (300-500 m), non-calcareous to calcareous siliceous mudstone. Although immature to marginally mature in outcrop, the Upper Calcareous and Rakauroa members have a TOC content up to 1.37% and comprise oil and gas-prone Types II and III (structured aqueous and structured terrestrial) kerogen. Bitumen extracts comprise predominantly marine organic matter with a moderate terrestrial higher plant component and indicate that deposition occurred under mildly reducing conditions, with periodic anoxic episodes indicated for the Upper Calcareous Member. Two families of oils are recognised in the southern East Coast Basin. The Kerosene Rock, Westcott, Tiraumea and Okau Stream oils comprise both algal marine and terrestrial higher plant material and were deposited under periodically anoxic conditions. They are characterised by high relative abundances of unusual C30 steranes (C30 indices of 0.24-0.40) and 28,30-bisnorhopane, low proportions of C28 steranes and isotopically heavy [delta] 13C values (-20.9 to -23.0 [per mil]). The Waipatiki and Tunakore oils from southern Hawke's Bay and the Kora-1 oil from the northern Taranaki Basin have similar geochemical characteristics and are also included in this family of oils. These same characteristics are also diagnostic of the Waipawa Black Shale and an oil-source rock correlation is made on this basis. The Knights Stream and Isolation Creek oils are derived from predominantly marine organic matter with a moderate terrestrial angiosperm contribution, and characterised by low relative abundances of C30 steranes (C30 indices of 0.06-0.12) and 28,30-bisnorhopane, high proportions of C28 steranes and isotopically light [delta] 13C values (-26.8 to -28.9 [per mil]). Also included in this family of oils, with a slightly greater marine influence, are the major seep oils of the northern East Coast Basin (Waitangi, Totangi and Rotokautuku). A tentative oil-source rock correlation with the Upper Calcareous and Rakauroa members of the Whangai Formation is based on their similar geochemical characteristics.</p>


1985 ◽  
Vol 25 (1) ◽  
pp. 62 ◽  
Author(s):  
P.W. Vincent I.R. Mortimore ◽  
D.M. McKirdy

The northern part of the Naccowlah Block, situated in the southeastern part of the Authority to Prospect 259P in southwestern Queensland, is a major Eromanga Basin hydrocarbon province. The Hutton Sandstone is the main reservoir but hydrocarbons have been encountered at several levels within the Jurassic-Cretaceous sequence. In contrast, the underlying Cooper Basin sequence is generally unproductive in the Naccowlah Block although gas was discovered in the Permian at Naccowlah South 1. Oil and gas discoveries within the Eromanga Basin sequence are confined to the Naccowlah-Jackson Trend. This trend forms a prominent high separating the deep Nappamerri Trough from the shallower, more stable northern part of the Cooper Basin.The Murta Member is mature for initial oil generation along the Naccowlah-Jackson Trend and has sourced the small oil accumulations within this unit and the underlying Namur Sandstone Member. The Birkhead Formation is a good source unit in this area with lesser oil source potential also evident in the Westbourne Formation and 'basal Jurassic'. Source quality and maturation considerations imply that much of the oil discovered in Jurassic reservoirs along the Naccowlah-Jackson Trend was generated from more mature Jurassic source beds in the Nappamerri Trough area to the southwest. Maturation modelling of this deeper section suggests that hydrocarbon generation from Jurassic source units commenced in the Early Tertiary. Significant oil generation and migration has therefore occurred since the period of major structural development of the Naccowlah-Jackson Trend in the Early Tertiary. This trend, however, has long been a major focus for hydrocarbon migration paths out of the Nappamerri Trough as a result of intermittent structuring during the Mesozoic. Gas reservoired in Jurassic sandstones at Chookoo has been generated from more mature Jurassic source rocks in the deeper parts of the Nappamerri Trough.Permian sediments in the Nappamerri Trough area are overmature for oil generation and are gas prone. Gas generated in this area has charged the lean Permian gas Field at Naccowlah South, along the Wackett-Naccowlah- Jackson Trend. North of this trend Permian source rocks are mainly gas prone but more favourable levels of maturity allow the accumulation of some gas liquids and oil. However, geological and geochemical evidence suggests that Permian sediments did not source the oil found in Jurassic-Cretaceous reservoirs in the Jackson- Naccowlah area.


2011 ◽  
Vol 48 (6) ◽  
pp. 897-929 ◽  
Author(s):  
Filippo Ferri

Lower to Middle Jurassic clastic sequences are widespread within the interior of the Canadian Cordillera. These successions cap waning Jurassic volcanism in many Cordilleran arc terranes and are succeeded by clastic sequences of the Intermontane basins. Fine-grained, carbonaceous lithologies, which locally contain elevated levels of organic carbon, characterize these clastic successions. These include sections of the Spatsizi Formation (Abou Member) and Smithers Formation in northern and western Bowser basin, respectively, Ashcroft Formation and equivalent strata in central Quesnellia, and Last Creek Formation and Junction Creek rocks below the Tyaughton–Methow basin. These rocks locally contain metre-thick sections with total organic carbon (TOC) levels >5 wt.% and others have thicknesses approaching 100 m with TOC between 3 and 5 wt.%. Thermal maturation levels are high in many sections, suggesting original organic contents were greater and that these rocks may have been excellent source beds. Associated bitumen in these successions, together with Mesozoic oil in some overlying Intermontane clastic rocks, also suggests these sequences may have been effective oil source rocks. TOC levels, thermal maturity, and thickness of some sections are comparable with shale gas sequences being exploited elsewhere in North America. TOC concentrations within these rocks, together with other elemental abundances, indicate anoxic conditions during deposition. The age of these clastic rocks brackets the global Toarcian anoxic event and that of other organic-rich sequences in North America. Elemental abundances suggest predominantly volcanic-arc complexes as source terranes, although continental signatures are suggested by rocks in western Quesnellia.


2021 ◽  
Vol 11 ◽  
pp. 55-61
Author(s):  
M. A. Tugarova ◽  

Carbonate rocks represented by nodules, lenses, layers of different morphology and length are typical for the black shale formations of different ages. They are of the greatest interest in oil source rocks as indicators of complex and not always unambiguously interpreted geological processes. A special place among these sedimentary bodies is occupied by microbialites, which indicate suppression of development of marine organic biocenoses, and often reflect emanation processes in ancient strata. Proof of these phenomena is fundamentally important for predicting and assessing the oil and gas potential of unconventional reservoirs. On the example of carbonate solids of Triassic and Jurassic black shale formations, we present a complex analytical method to determine the microbial biochemical genesis of rocks on the base of the isotopic composition of carbon and oxygen, together with the hydrocarbon molecular markers of organic matter. The geochemical features of the isolated microbialites suggest that they are resulted from a complex history of black shale formations, which reflects both background lithogenetic transformations and superimposed processes, including high-temperature hydrothermal ones.


1998 ◽  
Vol 38 (1) ◽  
pp. 399 ◽  
Author(s):  
C.J. Boreham ◽  
R.A. de Boer

Dry gas in the Gilmore Field of the Adavale Basin has been sourced from both wet gas associated with oil generation, together with methane from a deep, overmature source. The latter gas input is further characterised by a high nitrogen content co-generated with isotopically heavy methane and carbon dioxide. The eastern margin of the Lissoy Sandstone principal reservoir unit contains the higher content of overmature dry gas supporting reservoir compiirtmenmlisalion and a more favourable migration pathway to this region. The combination of a molecular and multi-element isotopic approach is an effective tool for the recognition of an overmature, dry gas source. This deep source represents a play concept that previously has been undervalued and may be more widespread within Australian sedimentary basins.The maturity level of the wet gas and associated oil are identical, having reached an equivalent vitrinite reflectance of 1.4−1.6 per cent. Modelling studies support the concept of local Devonian source rocks for the wet gas and oil. Reservoir filling from late stage, high maturity oil and gas generation and expulsion, was a result of reactivation of petroleum generation from Devonian source rocks during the Early Cretaceous. The large input of dry gas from a deeper and highly overmature source is a more recent event. This gas can fractionally displace condensable C2+ liquids already in the reservoir possibly allowing tertiary migration into younger reservoirs, or adjacent structures.Oil recovered from Gilmore-2 has been sourced from Devonian marine organic matter, deposited under mildly evaporitic, restricted marine conditions. The most likely source rocks in the Adavale Basin are the basal marine shale of the Log Creek Formation, algal shales at the top of the Lissoy Sandstone, and the Cooladdi Dolomite. Source-sensitive biomarkers and carbon isotope composition of the Gilmore-2 oil have much in common with other Devonian-sourced oils from the Bonaparte and Canning basins. The chemical link between western and eastern Australian Devonian oils may suggest diachronous development of source rocks over a wide extent. This implies that the source element of the Devonian Petroleum Supersystem may be present in other sedimentary basins.


Sign in / Sign up

Export Citation Format

Share Document