scholarly journals Xylobiose Prevents High-Fat Diet Induced Mice Obesity by Suppressing Mesenteric Fat Deposition and Metabolic Dysregulation

Molecules ◽  
2018 ◽  
Vol 23 (3) ◽  
pp. 705 ◽  
Author(s):  
Soo-min Lim ◽  
Eunju Kim ◽  
Jae-Ho Shin ◽  
Pu Seok ◽  
Sangwon Jung ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Chi H. L. Dinh ◽  
Alexander Szabo ◽  
Yinghua Yu ◽  
Danielle Camer ◽  
Hongqin Wang ◽  
...  

Mesenteric fat belongs to visceral fat. An increased deposition of mesenteric fat contributes to obesity associated complications such as type 2 diabetes and cardiovascular diseases. We have investigated the therapeutic effects of bardoxolone methyl (BARD) on mesenteric adipose tissue of mice fed a high-fat diet (HFD). Male C57BL/6J mice were administered oral BARD during HFD feeding (HFD/BARD), only fed a high-fat diet (HFD), or fed low-fat diet (LFD) for 21 weeks. Histology and immunohistochemistry were used to analyse mesenteric morphology and macrophages, while Western blot was used to assess the expression of inflammatory, oxidative stress, and energy expenditure proteins. Supplementation of drinking water with BARD prevented mesenteric fat deposition, as determined by a reduction in large adipocytes. BARD prevented inflammation as there were fewer inflammatory macrophages and reduced proinflammatory cytokines (interleukin-1 beta and tumour necrosis factor alpha). BARD reduced the activation of extracellular signal-regulated kinase (ERK) and Akt, suggesting an antioxidative stress effect. BARD upregulates energy expenditure proteins, judged by the increased activity of tyrosine hydroxylase (TH) and AMP-activated protein kinase (AMPK) and increased peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and uncoupling protein 2 (UCP2) proteins. Overall, BARD induces preventive effect in HFD mice through regulation of mesenteric adipose tissue.


2021 ◽  
Author(s):  
Xue Jiang ◽  
Jie Hao ◽  
Zijian Liu ◽  
Xueting Ma ◽  
Yuxin Feng ◽  
...  

Obesity is characterized by massive fat deposition and is related to a series of metabolic complications, such as insulin resistance (IR) and steatohepatitis. Grifola frondosa (GF) is a basidiomycete fungus...


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1740
Author(s):  
Yuning Pang ◽  
Xiang Xu ◽  
Xiaojun Xiang ◽  
Yongnan Li ◽  
Zengqi Zhao ◽  
...  

A high-fat diet often leads to excessive fat deposition and adversely affects the organism. However, the mechanism of liver fat deposition induced by high fat is still unclear. Therefore, this study aimed at acetyl-CoA carboxylase (ACC) to explore the mechanism of excessive liver deposition induced by high fat. In the present study, the ORF of ACC1 and ACC2 were cloned and characterized. Meanwhile, the mRNA and protein of ACC1 and ACC2 were increased in liver fed with a high-fat diet (HFD) or in hepatocytes incubated with oleic acid (OA). The phosphorylation of ACC was also decreased in hepatocytes incubated with OA. Moreover, AICAR dramatically improved the phosphorylation of ACC, and OA significantly inhibited the phosphorylation of the AMPK/ACC pathway. Further experiments showed that OA increased global O-GlcNAcylation and agonist of O-GlcNAcylation significantly inhibited the phosphorylation of AMPK and ACC. Importantly, the disorder of lipid metabolism caused by HFD or OA could be rescued by treating CP-640186, the dual inhibitor of ACC1 and ACC2. These observations suggested that high fat may activate O-GlcNAcylation and affect the AMPK/ACC pathway to regulate lipid synthesis, and also emphasized the importance of the role of ACC in lipid homeostasis.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Rieko Takanabe ◽  
Koh Ono ◽  
Tomohide Takaya ◽  
Takahiro Horie ◽  
Hiromichi Wada ◽  
...  

Obesity is the result of an expansion and increase in the number of individual adipocytes. Since changes in gene expression during adipocyte differentiation and hypertrophy are closely associated with insulin resistance and cardiovascular diseases, further insight into the molecular basis of obesity is needed to better understand obesity-associated diseases. MicroRNAs (miRNAs) are approximately 17–24nt single stranded RNA, that post-transcriptionally regulate gene expression. MiRNAs control cell growth, differentiation and metabolism, and may be also involved in pathogenesis and pathophysiology of diseases. It has been proposed that miR-143 plays a role in the differentiation of preadipocytes into mature adipocytes in culture. However, regulated expression of miR-143 in the adult adipose tissue during the development of obesity in vivo is unknown. To solve this problem, C57BL/6 mice were fed with either high-fat diet (HFD) or normal chow (NC). Eight weeks later, severe insulin resistance was observed in mice on HFD. Body weight increased by 35% and the mesenteric fat weight increased by 3.3-fold in HFD mice compared with NC mice. We measured expression levels of miR-143 in the mesenteric fat tissue by real-time PCR and normalized with those of 5S ribosomal RNA. Expression of miR-143 in the mesenteric fat was significantly up-regulated (3.3-fold, p<0.05) in HFD mice compared to NC mice. MiR-143 expression levels were positively correlated with body weight (R=0.577, p=0.0011) and the mesenteric fat weight (R=0.608, p=0.0005). We also measured expression levels in the mesenteric fat of PPARγ and AP2, whose expression are deeply involved in the development of obesity, insulin resistant and arteriosclerosis. The expression levels of miR-143 were closely correlated with those of PPARγ (R=0.600, p=0.0040) and AP2 (R=0.630, p=0.0022). These findings provide the first evidence for up-regulated expression of miR-143 in the mesenteric fat of HFD-induced obese mice, which might contribute to regulated expression of genes involved in the pathophysiology of obesity.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Amy C Burke ◽  
Brian G Sutherland ◽  
Julia M Assini ◽  
Murray W Huff

Previous studies demonstrate that the addition of naringenin, a grapefruit flavonoid, to a high-fat diet prevents the development of many disorders of the metabolic syndrome and atherosclerosis in Ldlr-/- mice. Furthermore, in intervention studies, the addition of naringenin to a high-fat, high cholesterol (HFHC) diet reversed pre-established obesity, hyperlipidemia, hepatic steatosis, insulin resistance and improved atherosclerotic lesion pathology, but not lesion size. In the present intervention study, we tested the hypothesis that addition of naringenin to a chow diet would further improve pre-established metabolic dysregulation and attenuate lesion development, compared to chow alone. Ldlr-/- mice were fed a HFHC diet for 12 weeks to induce metabolic dysregulation. Subsequently, mice received one of 3 diets for another 12 weeks: 1) continuation of the HFHC diet, 2) an isoflavone-free chow diet or 3) isoflavone-free chow with 3% naringenin. At 12 weeks, the HFHC diet induced significant weight gain and increased adiposity. Intervention with chow alone reduced the weight gained during induction by 22%, whereas the addition of naringenin to chow induced a weight loss of 71%. Specifically, the reduction in adiposity was 2.75-times greater in naringenin-treated mice, compared to chow alone. The HFHC diet increased VLDL cholesterol 20-fold and LDL cholesterol 5-fold, which were reduced by intervention with both chow (>60%) and chow supplemented with naringenin (>80%). The HFHC diet induced insulin resistance and glucose intolerance. Naringenin improved insulin tolerance (plasma glucose AUC -38%) and glucose tolerance (plasma glucose AUC -58%), which was accompanied by normalization of plasma insulin and glucose. HFHC-induction promoted the development of intermediate atherosclerotic lesions. Continuation of the HFHC diet doubled lesion size. Intervention with chow alone attenuated lesion size progression by 65%. The addition of naringenin to chow slowed lesion progression by 90%, resulting in smaller lesions compared to chow intervention alone (P=0.042). We conclude that intervention with naringenin-supplemented chow enhances weight loss, improves metabolic dysregulation and halts the progression of atherosclerosis.


2019 ◽  
Vol 44 (4) ◽  
pp. 382
Author(s):  
K. Kususiyah ◽  
U. Santoso ◽  
Y. Fenita ◽  
A. M. H. Putranto ◽  
S. Suharyanto

A factorial design was used to analyzethe influenceofSauropus androgynusleaf extract (SALE) and turmeric powder (TP) on fat deposition in broilers fed high-fat diet. The first factor was the source of fat (6% beef fat and 6% palm oil), and the second factor was SALE plus TP [0 g SALE plus 0 g TP (G1), 9 g SALE plus 0.5 g TP (G2), 18 g SALE plus 0.5 g TP (G3), 9 g SALE plus 1 g TP (G4), 18 g SALE plus 1 g TP (G5)]. SALE plus TP affected cholesterol,lauric acid, myristic acid, palmitic acid, stearic acid and eicosapentaenoic acid contents (p<0.01).Fat sources affected fat, cholesterol, lauric acid, myristic acid, palmitic acid, stearic acid and eicosapentaenoic acid (p<0.01). There was a significant interaction between the two factorson fat, cholesterol, lauric acid, palmitic acid, stearic acid, and eicosapentaenoic acid contents. In conclusion, 18 g SALE plus 1 g TP supplementation to high-fat diet resulted in lower stearic acid, but it resulted in higher eicosapentaenoic acid. Supplementation of SALEplus TPto a high-fat diet lowered cholesterol content and changed fatty acidscomposition.


Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 688 ◽  
Author(s):  
Kyoung Soo Kim ◽  
Hari Madhuri Doss ◽  
Hee-Jin Kim ◽  
Hyung-In Yang

This study was conducted to investigate if taurine supplementation stimulates the induction of thermogenic genes in fat tissues and muscles and decipher the mechanism by which taurine exerts its anti-obesity effect in a mildly obese ICR (CD-1®) mouse model. Three groups of ICR mice were fed a normal chow diet, a high-fat diet (HFD), or HFD supplemented with 2% taurine in drinking water for 28 weeks. The expression profiles of various genes were analyzed by real time PCR in interscapular brown adipose tissue (BAT), inguinal white adipose tissue (iWAT), and the quadriceps muscles of the experimental groups. Genes that are known to regulate thermogenesis like PGC-1α, UCP-1, Cox7a1, Cox8b, CIDE-A, and β1-, β2-, and β3-adrenergic receptors (β-ARs) were found to be differentially expressed in the three tissues. These genes were expressed at a very low level in iWAT as compared to BAT and muscle. Whereas, HFD increased the expression of these genes. Taurine supplementation stimulated the expression of UCP-1, Cox7a1, and Cox8b in BAT and only Cox7a1 in muscle, while there was a decrease in iWAT. In contrast, fat deposition-related genes, monoamine oxidases (MAO)-A, and -B, and lipin-1, were decreased by taurine supplementation only in iWAT and not in BAT or muscle. In conclusion, the potential anti-obesity effects of taurine may be partly due to upregulated thermogenesis in BAT, energy metabolism of muscle, and downregulated fat deposition in iWAT.


2016 ◽  
Vol 157 ◽  
pp. 196-208 ◽  
Author(s):  
Saritha Krishna ◽  
Zhoumeng Lin ◽  
Claire B. de La Serre ◽  
John J. Wagner ◽  
Donald H. Harn ◽  
...  

2005 ◽  
Vol 21 (3) ◽  
pp. 343-350 ◽  
Author(s):  
Daisuke Hishikawa ◽  
Yeon-Hee Hong ◽  
Sang-gun Roh ◽  
Hisae Miyahara ◽  
Yukihiko Nishimura ◽  
...  

The factors that control fat deposition in adipose tissues are poorly understood. It is known that visceral adipose tissues display a range of biochemical properties that distinguish them from adipose tissues of subcutaneous origin. However, we have little information on gene expression, either in relation to fat deposition or on interspecies variation in fat deposition. The first step in this study was to identify genes expressed in fat depot of cattle using the differential display RT-PCR method. Among the transcripts identified as having differential expression in the two adipose tissues were cell division cycle 42 homolog (CDC42), prefoldin-5, decorin, phosphate carrier, 12S ribosomal RNA gene, and kelch repeat and BTB domain containing 2 (Kbtbd2). In subsequent experiments, we determined the expression levels of these latter genes in the pig and in mice fed either a control or high-fat diet to compare the regulation of fat accumulation in other animal species. The levels of CDC42 and decorin mRNA were found to be higher in visceral adipose tissue than in subcutaneous adipose tissue in cattle, pig, and mice. However, the other genes studied did not show consistent expression patterns between the two tissues in cattle, pigs, and mice. Interestingly, all genes were upregulated in subcutaneous and/or visceral adipose tissues of mice fed the high-fat diet compared with the control diet. The data presented here extend our understanding of gene expression in fat depots and provide further proof that the mechanisms of fat accumulation differ significantly between animal species.


Sign in / Sign up

Export Citation Format

Share Document