scholarly journals Novel Substituted Thiophenes and Sulf-Polyacetylene Ester from Echinops ritro L.

Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 805 ◽  
Author(s):  
Liang-Bo Li ◽  
Guang-Da Xiao ◽  
Wei Xiang ◽  
Xing Yang ◽  
Ke-Xin Cao ◽  
...  

Three new substituted bithiophenes (1–3), and one new sulf-polyacetylene ester, ritroyne A (16) were isolated from the whole plant of Echinops ritro together with twelve known substituted thiophenes. The structures were elucidated on the basis of extensive spectroscopic analysis including 1D and 2D NMR as well as MS. Furthermore, the absolute configuration of ritroyne A (16) was established by computational methods. In bioscreening experiments, four compounds (2, 4, 12, 14) showed similar antibacterial activity against Staphylococcus aureus ATCC 2592 with levofloxacin (8 µg/mL). Five compounds (2, 4, 9, 12, 14) exhibited antibacterial activities against Escherichia coli ATCC 25922, with minimum inhibitory concentration (MIC) values of 32–64 µg/mL. Three compounds (2, 4, 12) exhibited antifungal activities against Candida albicans ATCC 2002 with MIC values of 32–64 µg/mL. However, compound 16 did not exhibit antimicrobial activities against three microorganisms.

Marine Drugs ◽  
2019 ◽  
Vol 17 (3) ◽  
pp. 186 ◽  
Author(s):  
Xiuli Xu ◽  
Jiahui Han ◽  
Rui Lin ◽  
Steven Polyak ◽  
Fuhang Song

Two new piperazine-triones lansai E and F (1, 2), together with four known secondary metabolites lansai D (3), 1-N-methyl-(E,Z)-albonoursin (4), imidazo[4,5-e]-1,2,4-triazine (5), and streptonigrin (6) were isolated from a deep-sea-derived Streptomycetes sp. strain SMS636. The structures of the isolated compounds were confirmed by comprehensive spectroscopic analysis, including HRESIMS, 1D and 2D NMR. Compound 4 exhibited moderate antibacterial activities against Staphylococcus aureus and methicillin resistant S. aureus (MRSA) with Minimum Inhibitory Concentration (MIC) values of 12.5 and 25 μg/mL, respectively. Compound 6 displayed significant antibacterial activities against S. aureus, MRSA and Bacillus Calmette-Guérin (BCG) with MIC values of 0.78, 0.78 and 1.25 μg/mL, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Biswanath Chakraborty ◽  
Suchandra Chakraborty ◽  
Chandan Saha

The antibacterial activity of Murrayaquinone A (10), a naturally occurring carbazoloquinone alkaloid, and 6-methoxy-3,7-dimethyl-2,3-dihydro-1H-carbazole-1,4(9H)-dione (11), a synthetic carbazoloquinone, both obtained during the development of the synthesis of Carbazomycin G, having unique quinone moiety, was studied against Gram-positive (Bacillus subtilisandStaphylococcus aureus) and Gram-negative (Escherichia coliandPseudomonassp.) bacteria. Compound10showed antibacterial activities against both ofEscherichia coliandStaphylococcus aureuswhereas compound11indicated the activity againstStaphylococcus aureusonly. Both compounds10and11exhibited minimum inhibitory concentration (MIC) of 50 μg mL−1againstStaphylococcus aureus.


2021 ◽  
Vol 22 (10) ◽  
pp. 5097
Author(s):  
Takeshi Mori ◽  
Miyako Yoshida ◽  
Mai Hazekawa ◽  
Daisuke Ishibashi ◽  
Yoshiro Hatanaka ◽  
...  

Various peptides and their derivatives have been reported to exhibit antimicrobial activities. Although these activities have been examined against microorganisms, novel methods have recently emerged for conjugation of the biomaterials to improve their activities. Here, we prepared CKR12-PLGA, in which CKR12 (a mutated fragment of human cathelicidin peptide, LL-37) was conjugated with poly (lactic-co-glycolic) acid (PLGA), and compared the antimicrobial and antifungal activities of the conjugated peptide with those of FK13 (a small fragment of LL-37) and CKR12 alone. The prepared CKR12-PLGA was characterized by dynamic light scattering and measurement of the zeta potential, critical micellar concentration, and antimicrobial activities of the fragments and conjugate. Although CKR12 showed higher antibacterial activities than FK13 against Staphylococcus aureus and Escherichia coli, the antifungal activity of CKR12 was lower than that of FK13. CKR12-PLGA showed higher antibacterial activities against S. aureus and E. coli and higher antifungal activity against Candida albicans compared to those of FK13. Additionally, CKR12-PLGA showed no hemolytic activity in erythrocytes, and scanning and transmission electron microscopy suggested that CKR12-PLGA killed and disrupted the surface structure of microbial cells. Conjugation of antimicrobial peptide fragment analogues was a successful approach for obtaining increased microbial activity with minimized cytotoxicity.


2011 ◽  
Vol 233-235 ◽  
pp. 2328-2331 ◽  
Author(s):  
Hui Juan Wang ◽  
Hao Chen ◽  
Guang Ting Han

In this study, the total flavone contents of Apocynum venetum extract and Apocynum venetum fiber extracts were evaluated. Their antibacterial activity was tested via testing the antibacterial effect of their aqueous, ethyl acetate and n-butyl alcohol extracts. The results were showed that both the materials extracts at the concentration of 100, 50mg/ml had significantly antibacterial activities against staphylococcus aureus, and had a few effect on bacillus subtilis, pseudomonadaceae, pseudomonas aeruginosa, staphylococcus epidermidis, escherichia coli and candida albicans.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 313
Author(s):  
Xiuli Xu ◽  
Jiangpeng Li ◽  
Kai Zhang ◽  
Shangzhu Wei ◽  
Rui Lin ◽  
...  

Nine new secondary metabolites, including six isocoumarin analogues, 7-hydroxyoospolactone (1), 7-methoxyoospolactone (2), 7-methoxy-9-hydroxyoospolactone (3), 10-acetoxy-9-hydroxyoospolactone (4), 6-dehydroxysescandelin (5), parapholactone (6), and three compounds with a rare skeleton of isocoumarin coupled with phenylethylamine, namely paraphamide A (12), paraphamide B (13), and paraphamide C (14), together with five known compounds, oospolactone (7), 8-O-methyloospolactone (8), 10-hydroxyoospolactone (9), 9,10-dihydroxyoospolactone (10), and oospoglycol (11), were isolated and identified from the marine-derived fungus Paraphoma sp. CUGBMF180003. Their chemical structures were determined using spectroscopic data, including HRESIMS and 1D and 2D NMR techniques. Furthermore, the stereogenic carbons in 5 and 14 were determined by comparing the experimental and calculated electronic circular dichroism (ECD) spectra. The carbon skeleton of 12–14 was identified as the first example of isocoumarin coupled with phenylethylamine derivatives. All of these compounds were examined for antimicrobial activities against Candida albicans and Staphylococcus aureus. Both 1 and 6 showed antibacterial activity against S. aureus with MIC values of 12.5 μg/mL.


2019 ◽  
Vol 32 (1) ◽  
pp. 192-194
Author(s):  
S. Sudha Kumari

In present work, the screening of antimicrobial activities of copper(II) and cobalt(II) complexes with Schiff base ligand derived from the condensation of citral with valine (amino acid) was carried out on agar plates are reported. The antibacterial activity of Schiff base and its copper(II) and cobalt(II) complexes were evaluated against two bacterial strains Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative) and fungus Candida albicans. The results revealed that the Schiff base ligand exhibited the poor antimicrobial activity against Escherichia coli and Candida albicans except for Staphylococcus aureus. Generally, Gram-negative bacteria shows rigid outer membrane, well enough to defend against the drug but Schiff base (citral with valine derived) impregnated cobalt(II) complex seem to be more active against Escherichia coli organisms in comparison to copper(II) complex, which exhibits higher activity than uncomplexed ligand. The antimicrobial results revealed that cobalt(II) and copper(II) complexes have a considerable antibacterial activity than antifungal activity and suggest their potential application as antibacterial agents.


Author(s):  
Gouse Basha Sheik ◽  
Muazzam Sheriff Maqbul ◽  
Gokul Shankar S. ◽  
Ranjith M S

Objective: To isolate and characterize novel actinomycetes and to evaluate their antibacterial activity against drug-resistant pathogenic bacteriaMethods: In the present study, 19 soil samples were collected from different localities of Ad-Dawadmi, Saudi Arabia. Actinomycetes were isolated from these samples using serial dilution and plating method on Actinomycetes isolation agar supplemented with nalidixic acid and actidione to inhibit bacteria and fungi. Crude extracts of potential actinomycetes were produced by submerged fermentation. The antimicrobial activity of crude extracts of actinomycetes was tested against different bacteria using the agar well diffusion method. Characterization of the isolates was done by morphological, physiological and biochemical methods.Results: A total of 9 (47%) isolates of actinomycetes were isolated from 19 different soil samples tested. Among them, 4 (44%) isolates confirmed as Streptomyces sp. showed potential antimicrobial activity against one or more test organisms. Crude extracts were made from these 4 actinomycetes isolates(DOM1, DOM3, DP3, DP4)and tested for their antibacterial activities against 4 different clinical bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus). Crude extract from DP3 isolate showed highest antibacterial activity against all the four test organisms (28 mm, 21 mm, 20 mm and 18 mm) respectively and DP4 showed lowest antibacterial activity against all the four test organisms (14 mm, 12 mm, 0 mm, 6 mm) respectively. The highest zone of inhibition was shown by DP3 against Staphylococcus aureus (28 mm) and Escherichia coli was resistant for DP4. Most of the Inhibition zones produced by crude extracts showed significant differences when compared with control, tested against test organisms (P<0.05). Inhibition zones produced by DP3 and DOM1 against Staphylococcus aureus were 28 mm and 23 mm, respectively which were strong active when compared with control Ciprofloxacin (18 mm).Conclusion: Further studies for purification of bioactive metabolites and molecular characterization analysis of isolated Streptomyces sp. are in progress which would be helpful in discovering novel compounds of commercial value.


1983 ◽  
Vol 38 (1-2) ◽  
pp. 151-152 ◽  
Author(s):  
Ferdinand Devínsky ◽  
Ivan Lacko ◽  
Ludovít Krasnec ◽  
Dušan Mlynarčík

Antimicrobial activity of N,N′-bis(decylmethyl)-α,ω-alkanediamine dioxides determined on Staphylococcus aureus, Escherichia coli, and Candida albicans is presented as minimal inhibitory concentration (MIC). The effect of the length of linking alkylene chain on this activity has been followed.


Author(s):  
Haribhai Rabari ◽  
Hetal Vankar ◽  
Beenkumar Prajapati

The emergence of multidrug microbial resistance is the main challenges that the modern scientists have so far been facing in the recent era. In this respect, new series of drug classes having potential to give antimicrobial effect have been synthesized. A new series of 5- substituted-1,10 b-dihydroimidazole[1,2-c]quinazoline derivatives 8a-e have been synthesized and screened for antibacterial activity and antifungal activity. Synthesized derivatives were characterized by IR, MASS and 1H-NMR spectroscopy. Synthesized compounds show good activity, which was comparable to the standard drug and it can be useful for the further clinical study. Antibacterial activity was evaluated against four different pathogenic bacterial strains like Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Pseudo-monas aeruginosa. Among the screened compounds, 8e show good antibacterial activity against Staphylococcus aureus and Escherichia coli with MIC of 50 and 100 μg/ml respectively. Antifungal activity was evaluated  against two strains of fungi. Among the synthesized derivates, compound 8c was emerged out as the potent antifungal compound against Candida albicans and Aspergillus niger with MIC of 25 μg/ml and 75μg/ml respectively. Compound 8e also shows good antifungal activity with MIC of 50 μg/ml against both Candida albicans and Aspergillus niger. The overall results of this study indicated that  synthesized quinazoline derivatives had the potential to act as an antibacterial and antifungal agent, hence further investigation is warranted.


2018 ◽  
Vol 13 (7) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Subrat Kumar Bhattamisra ◽  
Chew Hui Kuean ◽  
Lee Boon Chieh ◽  
Vivian Lee Yean Yan ◽  
Chin Koh Lee ◽  
...  

The antibacterial activity of geraniol and its effect in combination with ampicillin, amoxicillin and clarithromycin against Staphylococcus aureus, Escherichia coli and Helicobacter pylori was tested. The minimum inhibitory concentrations (MICs) and combinatory effects of geraniol against the bacteria were assessed by using the modified broth microdilution and checkerboard assay, respectively. The combinatory effect is expressed as fractional inhibitory concentration index (FICI). The MIC of geraniol against S. aureus, E. coli and H. pylori was found to be 11200, 5600, and 7325 μg/mL, respectively. A significant synergistic effect was observed with geraniol and ampicillin against S. aureus with FICI in the range 0.19 to 0.32. Geraniol and ampicillin exhibited a partial synergistic effect against E. coli. A similar effect was observed with geraniol and clarithromycin against S. aureus. A partial synergistic effect was observed with clarithromycin and geraniol against H. pylori with the FICI value in the range 0.86 to 0.89. An additive effect was observed with geraniol and amoxicillin combination against H. pylori. However, the amoxicillin and clarithromycin dose was reduced by thirty-two fold when combined with geraniol against H. pylori. The anti- H. pylori effect of geraniol with clarithromycin and amoxicillin could be of potential interest in the treatment of H. pylori infection and associated ulcers in humans. Further, geraniol, in combination with other antibiotics, has substantial therapeutic potential against S. aureus and E.coli infection.


Sign in / Sign up

Export Citation Format

Share Document