scholarly journals Chasing ChEs-MAO B Multi-Targeting 4-Aminomethyl-7-Benzyloxy-2H-Chromen-2-ones

Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4507 ◽  
Author(s):  
Mariagrazia Rullo ◽  
Marco Catto ◽  
Antonio Carrieri ◽  
Modesto de Candia ◽  
Cosimo Damiano Altomare ◽  
...  

A series of 4-aminomethyl-7-benzyloxy-2H-chromen-2-ones was investigated with the aim of identifying multiple inhibitors of cholinesterases (acetyl- and butyryl-, AChE and BChE) and monoamine oxidase B (MAO B) as potential anti-Alzheimer molecules. Starting from a previously reported potent MAO B inhibitor (3), we studied single-point modifications at the benzyloxy or at the basic moiety. The in vitro screening highlighted triple-acting compounds (6, 8, 9, 16, 20) showing nanomolar and selective MAO B inhibition along with IC50 against ChEs at the low micromolar level. Enzyme kinetics analysis toward AChE and docking simulations on the target enzymes were run in order to get insight into the mechanism of action and plausible binding modes.

2020 ◽  
Vol 7 (4) ◽  
pp. 200050
Author(s):  
Adel Amer ◽  
Abdelrahman H. Hegazi ◽  
Mohammed Khalil Alshekh ◽  
Hany E. A. Ahmed ◽  
Saied M. Soliman ◽  
...  

A new series of N'-substituted benzylidene-2-(4-oxo-2-phenyl-1,4-dihydroquinazolin-3(2H)-yl)acetohydrazide ( 5a–5h ) has been synthesized, characterized by FT-IR, NMR spectroscopy and mass spectrometry and tested against human monoamine oxidase (MAO) A and B. Only (4-hydroxy-3-methoxybenzylidene) substituted compounds gave submicromolar inhibition of MAO-A and MAO-B. Changing the phenyl substituent to methyl on the unsaturated quinazoline ring ( 12a–12d ) decreased inhibition, but a less flexible linker ( 14a–14d ) resulted in selective micromolar inhibition of hMAO-B providing insight for ongoing design.


Biomédica ◽  
2019 ◽  
Vol 39 (3) ◽  
pp. 491-501
Author(s):  
María del Pilar Olaya ◽  
Nadezdha Esperanza Vergel ◽  
José Luis López ◽  
María Dolores Viña ◽  
Mario Francisco Guerrero

Introduction: Parkinson’s disease is the second most common neurodegenerative disease. Monoamine oxidase B inhibitors are used in the treatment of this disease concomitantly with levodopa or as monotherapy. Several substituted coumarins have shown activity as inhibitors of monoamine oxidase B.Objective: To evaluate the possible antiparkinsonian effects of the coumarin analogue FCS005 (3-methyl-7H-furo[3,2-g]chromen-7-one) in mouse models, as well as its inhibitory activity towards monoamine oxidases (MAO) and its antioxidant activity.Materials and methods: FCS005 was synthesized and the reversal of hypokinesia was evaluated in the reserpine and levodopa models. Moreover, in the haloperidol model, its anticataleptic effects were evaluated. Additionally, the monoamine oxidase inhibitory activity and antioxidant activity of FCS005 were evaluated using in vitro and ex vivo studies, respectively.Results: FCS005 (100 mg/kg) caused the reversal of hypokinesia in the reserpine and levodopa models. This furocoumarin also presented anti-cataleptic effects at the same dose. Besides, it showed selective inhibitory activity towards the MAO-B isoform and antioxidant activity.Conclusion: These results attribute interesting properties to the compound FCS005. It is important to continue research on this molecule considering that it could be a potential antiparkinsonian agent.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 331 ◽  
Author(s):  
Miguel Pinto ◽  
Carlos Fernandes ◽  
Eva Martins ◽  
Renata Silva ◽  
Sofia Benfeito ◽  
...  

The current pharmacological treatments for Parkinson’s disease only offer symptomatic relief to the patients and are based on the administration of levodopa and catechol-O-methyltransferase or monoamine oxidase-B inhibitors (IMAO-B). Since the majority of drug candidates fail in pre- and clinical trials, due largely to bioavailability pitfalls, the use of polymeric nanoparticles (NPs) as drug delivery systems has been reported as an interesting tool to increase the stealth capacity of drugs or help drug candidates to surpass biological barriers, among other benefits. Thus, a novel potent, selective, and reversible IMAO-B (chromone C27, IC50 = 670 ± 130 pM) was encapsulated in poly(caprolactone) (PCL) NPs by a nanoprecipitation process. The resulting C27-loaded PEGylated PCL NPs (~213 nm) showed high stability and no cytotoxic effects in neuronal (SH-SY5Y), epithelial (Caco-2), and endothelial (hCMEC/D3) cells. An accumulation of PEGylated PCL NPs in the cytoplasm of SH-SY5Y and hCMEC/D3 cells was also observed, and their permeation across Caco-2 and hCMEC/D3 cell monolayers, used as in vitro models of the human intestine and blood-brain barrier, respectively, was demonstrated. PEGylated PCL NPs delivered C27 at concentrations higher than the MAO-B IC50 value, which provides evidence of their relevance to solving the drug discovery pitfalls.


Author(s):  
Hasanain Abdulhameed Odhar ◽  
Safaa Muhsen Kareem ◽  
Mohammed Ridha A Alhaideri ◽  
Mohammed Abbas Hasan ◽  
Werner J Geldenhuys

Parkinson’s disease is an age related neurodegenerative disease. Pioglitazone is a Peroxisome proliferator-activated receptor gamma agonist that has been shown to display a neuroprotective effect in parkinsonian models (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treated mice). This effect was partially attributed to the ability of thiazolidinedione (TZD) moiety in Pioglitazone to selectively inhibit monoamine oxidase B (MAO-B) enzyme. In the current study, we screened several thiazolidine containing compounds against MAO-B enzyme both in silico and in vitro. Based on the resulted data and information from previous literatures, we were able to design a novel scaffold for MAO-B inhibitors. This scaffold (compound 5482440) was able to inhibit MAO-B enzyme with IC50 value of 1.447 μM. Structure-based virtual analysis showed that this compound was able to participate in water-bridge formation and obtain an extended conformation within MAO-B active site.


Author(s):  
Naseer Maliyakkal ◽  
Ipek Baysal ◽  
Anandkumar Tengli ◽  
Gulberk Ucar ◽  
Mohammad Ali Abdullah Almoyad ◽  
...  

Background: Chalcones with methoxy substituents are considered as a promising framework for the inhibition of monoamine oxidase (MAO) enzymes. Methods: A series of nine trimethoxy substituted chalcones (TMa-TMi) was synthesized and evaluated as a multifunctional class of MAO inhibitors. All the synthesized compounds were investigated for their in vitro MAO inhibition, kinetics, reversibility, blood-brain barrier (BBB) permeation, and cytotoxicity and antioxidant potentials. Results: In the present study, compound (2E)-3-(4-nitrophenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (TMf) was provided with an MAO-A inhibition constant value equal to 3.47±0.09 μM and with a selectivity of 0.008. Thus, it was comparable to that of moclobemide, a well known potent hMAO-A inhibitor (SI=0.010). Compound (2E)-3-(4-bromophenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (TMh) showed good MAO-B inhibition, with an inhibition constant of 0.46±0.009 μM. The PAMPA assay demonstrated that all the synthesized derivatives can cross the BBB successfully. The cytotoxicity studies revealed that TMf and TMh have 88.22 and 80.18 % cell viability at 25 µM. Compound TMf appeared as the most promising antioxidant molecule with IC50 values, relative to DPPH and H2O2 radical activities, equal to 6.02±0.17 and 7.25±0.07 μM. To shed light on the molecular interactions of TMf and TMh towards MAO-A and MAO-B, molecular docking simulations and MM/GBSA calculations have been carried out. Conclusion: The lead molecules TMf and TMh with multi-functional nature can be further employed for the treatment of various neurodegenerative disorders and depressive states.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3896
Author(s):  
Geum Seok Jeong ◽  
Myung-Gyun Kang ◽  
Joon Yeop Lee ◽  
Sang Ryong Lee ◽  
Daeui Park ◽  
...  

Eight compounds were isolated from the roots of Glycyrrhiza uralensis and tested for cholinesterase (ChE) and monoamine oxidase (MAO) inhibitory activities. The coumarin glycyrol (GC) effectively inhibited butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) with IC50 values of 7.22 and 14.77 µM, respectively, and also moderately inhibited MAO-B (29.48 µM). Six of the other seven compounds only weakly inhibited AChE and BChE, whereas liquiritin apioside moderately inhibited AChE (IC50 = 36.68 µM). Liquiritigenin (LG) potently inhibited MAO-B (IC50 = 0.098 µM) and MAO-A (IC50 = 0.27 µM), and liquiritin, a glycoside of LG, weakly inhibited MAO-B (>40 µM). GC was a reversible, noncompetitive inhibitor of BChE with a Ki value of 4.47 µM, and LG was a reversible competitive inhibitor of MAO-B with a Ki value of 0.024 µM. Docking simulations showed that the binding affinity of GC for BChE (−7.8 kcal/mol) was greater than its affinity for AChE (−7.1 kcal/mol), and suggested that GC interacted with BChE at Thr284 and Val288 by hydrogen bonds (distances: 2.42 and 1.92 Å, respectively) beyond the ligand binding site of BChE, but that GC did not form hydrogen bond with AChE. The binding affinity of LG for MAO-B (−8.8 kcal/mol) was greater than its affinity for MAO-A (−7.9 kcal/mol). These findings suggest GC and LG should be considered promising compounds for the treatment of Alzheimer’s disease with multi-targeting activities.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4118
Author(s):  
Tjaša Mazej ◽  
Damijan Knez ◽  
Anže Meden ◽  
Stanislav Gobec ◽  
Matej Sova

The multi-target-directed ligands (MTDLs) strategy is encouraged for the development of novel modulators targeting multiple pathways in the neurodegenerative cascade typical for Alzheimer’s disease (AD). Based on the structure of an in-house irreversible monoamine oxidase B (MAO-B) inhibitor, we aimed to introduce a carbamate moiety on the aromatic ring to impart cholinesterase (ChE) inhibition, and to furnish multifunctional ligands targeting two enzymes that are intricately involved in AD pathobiology. In this study, we synthesized three dual hMAO-B/hBChE inhibitors 13–15, with compound 15 exhibiting balanced, low micromolar inhibition of hMAO-B (IC50 of 4.3 µM) and hBChE (IC50 of 8.5 µM). The docking studies and time-dependent inhibition of hBChE confirmed the initial expectation that the introduced carbamate moiety is responsible for covalent inhibition. Therefore, dual-acting compound 15 represents an excellent starting point for further optimization of balanced MTDLs.


2013 ◽  
Vol 57 (7) ◽  
pp. 3060-3066 ◽  
Author(s):  
S. Flanagan ◽  
K. Bartizal ◽  
S. L. Minassian ◽  
E. Fang ◽  
P. Prokocimer

ABSTRACTTedizolid phosphate is a novel oxazolidinone prodrug whose active moiety, tedizolid, has improved potency against Gram-positive pathogens and pharmacokinetics, allowing once-daily administration. Given linezolid warnings for drug-drug and drug-food interactions mediated by monoamine oxidase (MAO) inhibition, including sporadic serotonergic toxicity, these studies evaluated tedizolid for potential MAO interactions.In vitro, tedizolid and linezolid were reversible inhibitors of human MAO-A and MAO-B; the 50% inhibitory concentration (IC50) for tedizolid was 8.7 μM for MAO-A and 5.7 μM for MAO-B and 46.0 and 2.1 μM, respectively, with linezolid. Tedizolid phosphate was negative in the mouse head twitch model of serotonergic activity. Two randomized placebo-controlled crossover clinical studies assessed the potential of 200 mg/day tedizolid phosphate (at steady state) to enhance pressor responses to coadministered oral tyramine or pseudoephedrine. Sensitivity to tyramine was determined by comparing the concentration of tyramine required to elicit a ≥30-mmHg increase in systolic blood pressure (TYR30) when administered with placebo versus tedizolid phosphate. The geometric mean tyramine sensitivity ratio (placebo TYR30/tedizolid phosphate TYR30) was 1.33; a ratio of ≥2 is considered clinically relevant. In the pseudoephedrine study, mean maximum systolic blood pressure was not significantly different when pseudoephedrine was coadministered with tedizolid phosphate versus placebo. In summary, tedizolid is a weak, reversible inhibitor of MAO-A and MAO-Bin vitro. Provocative testing in humans and animal models failed to uncover significant signals that would suggest potential for hypertensive or serotonergic adverse consequences at the therapeutic dose of tedizolid phosphate. Clinical studies are registered atwww.clinicaltrials.govas NCT01539473 (tyramine interaction study conducted at Covance Clinical Research Center, Evansville, IN) and NCT01577459 (pseudoephedrine interaction study conducted at Vince and Associates Clinical Research, Overland Park, KS).


Sign in / Sign up

Export Citation Format

Share Document