scholarly journals Carbon-Supported Raney Nickel Catalyst for Acetone Hydrogenation with High Selectivity

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 803
Author(s):  
Shuliang Lu ◽  
Jiajia Wu ◽  
Hui Peng ◽  
Yong Chen

Catalysts with high selectivity play key roles in green chemistry. In this work, a granular Raney Ni catalyst using carbon as support (Raney Ni/C) was developed by mixing phenolic resin with Ni-Al alloy, conducting carbonization at high temperature, and leaching with alkaline liquor. The as-prepared Raney Ni/C catalyst is suitable for use in fix-bed reactors. Moreover, it shows high activity and selectivity for catalytic acetone hydrogenation. For instance, at the reaction temperature of 120 °C, the conversion of acetone can reach up to 99.9% and the main byproduct methyl isobutylcarbinol (MIBC) content can be diminished to 0.02 wt%. The Raney Ni/C may represent a new type of shaped Raney metal catalysts, which are important fix-bed catalysts in chemical industry.

2013 ◽  
Vol 651 ◽  
pp. 198-203
Author(s):  
Xiu Ling Wang ◽  
Li Ying Yang ◽  
Shou Ren Wang

It is significant and necessary to carry out the research and development of self-lubricating bearing. The current study of metal matrix self-lubricating bearing materials is summarized. A new type of high temperature self-lubricating Ti-Al alloy bearing materials is proposed. It is light, anti-friction, anti-corrosion and high temperature resistance (600 °C). The future trend is introduced in the end of this paper.


2005 ◽  
Vol 475-479 ◽  
pp. 755-758 ◽  
Author(s):  
Ya Xu ◽  
Satoshi Kameoka ◽  
Kyosuke Kishida ◽  
Masahiko Demura ◽  
An Pong Tsai ◽  
...  

Ni3Al has attractive high temperature properties, such as high strength and good oxidation/corrosion resistance, and is possible to be used for high temperature chemical processing and manufacture. Until now, the catalytic properties of Ni3Al were rarely investigated since the leaching of aluminum from Ni3Al is difficult to obtain a porous Raney-Ni compared to NiAl3 and Ni2Al3. In the present work, the catalytic properties of Ni3Al were examined for hydrogen production reactions from methanol. It was found that alkali-leached Ni3Al showed high activity for methanol decomposition (CH3OH→ 2H2+CO). Furthermore, Ni3Al catalysts suppress the formation of methane, i.e. they show higher selectivity for the methanol decomposition reaction than Ni catalyst. These results indicate a possibility for Ni3Al used as a catalyst for hydrogen production reaction.


2010 ◽  
Vol 436 ◽  
pp. 85-91 ◽  
Author(s):  
Toshihide Takenaka ◽  
Hidetaka Matsuo ◽  
Mitsuru Sugawara ◽  
Masahiro Kawakami

Direct electrolysis of Ti and its alloys has been attempted by the process using a DC-ESR unit. The concept of the process is explained in detail, and the expected key issues are commented. Liquid Ti metal was obtained in a CaF2-CaO-TiO2 bath, and electrolysis by using a new type of the electrolytic cell was also tried. Ti-Al alloy was successfully deposited in a CaF2-CaO-TiO2-Al2O3 bath, whereas Ti-Si alloy was not obtained in a CaF2-CaO-TiO2-SiO2 bath yet. Ti-Fe alloy was extracted in CaF2-CaO-TiO2-FeO bath of a particular composition. A common correlation between the cathodic current efficiency and the average consumed electric power seen in the Ti, Ti-Al and Ti-Fe electrolysis suggested the importance of sufficient temperature in the process. The bath composition also affected the temperature through the change in the electric conductivity of the bath.


1991 ◽  
Vol 246 ◽  
Author(s):  
R. Kainuma ◽  
H. Nakano ◽  
K. Oikawa ◽  
K. Ishida ◽  
T. Nishizawa

AbstractAn attempt to develop a new type of high temperature shape memory alloys based on the Ni-Al system has been made through microstructural control. Addition of Fe or Mn to the binary Ni-Al alloy results in the formation of a ductile fcc phase in an extremely brittle P matrix phase, leading to an improvement in its ductility. These ductile alloys with β + γ two-phase structure in the Ni-Al-Fe, Ni-Al-Mn and Ni-Al-Mn-Fe systems exhibit a shape memory effect due to a thermoelastic martensitic transformation in the temperature range between -100°C and 700°C; besides, the transformation temperatures are easily controlled by annealing at an appropriate temperature. These alloys are expected to be a new group of shape memory alloys which operate at elevated temperatures.


2001 ◽  
Vol 204 (2) ◽  
pp. 512-515 ◽  
Author(s):  
Bo Liu ◽  
Minghua Qiao ◽  
Jing-Fa Deng ◽  
Kangnian Fan ◽  
Xiaoxin Zhang ◽  
...  

CrystEngComm ◽  
2020 ◽  
Vol 22 (44) ◽  
pp. 7601-7606
Author(s):  
Chunxiao Wang ◽  
Hong-an Ma ◽  
Liangchao Chen ◽  
Xinyuan Miao ◽  
Liang Zhao ◽  
...  

Here, a new type of supercharged cell assembly is proposed that can effectively reduce the oil pressure during high-pressure, high-temperature (HPHT) diamond synthesis.


Holzforschung ◽  
2020 ◽  
Vol 74 (6) ◽  
pp. 597-604
Author(s):  
Sara Starrsjö ◽  
Olena Sevastyanova ◽  
Peter Sandström ◽  
Juha Fiskari ◽  
Maria Boman ◽  
...  

AbstractRecently, a new type of bleaching sequence, Elemental Chlorine Free (ECF) light with one D stage, has been developed. It combines the efficiency and high selectivity of chlorine dioxide (ClO2) bleaching with more environmental friendly oxygen based bleaching chemicals. This work examines the effect of pH on the formation of adsorbable organically bound halogens (AOX) in an intermediate D stage – a single ClO2 stage at the middle of an ECF light bleaching sequence. Carbon dioxide (CO2) is used to generate a bicarbonate buffer in situ, stabilizing the pH during the bleaching. Near-neutral pH is hypothesized to decrease the formation of strongly chlorinating species, so that the AOX formation is reduced. The results indicate that a near-neutral pH D stage can reduce the AOX content in the effluents with up to 30%. The ISO brightness was unchanged to a lower ClO2 consumption. The pulp viscosity was slightly higher after near-neutral pH D stage, but to its disadvantage a lesser delignification and removal of HexA was obtained. The degradation of HexA correlated well with the AOX, affirming earlier theories that HexA has a major impact on the AOX formation. The higher amounts of residual HexA and lignin resulted in more thermal yellowing of the pulps bleached with a near-neutral pH D stage.


2009 ◽  
Vol 57 (7) ◽  
pp. 1767-1773 ◽  
Author(s):  
Lu Gao ◽  
Liang Sun ◽  
Fei Li ◽  
Qiang Zhang ◽  
Yuehui Wang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 526
Author(s):  
Zhengyuan Li ◽  
Lijia Chen ◽  
Haoyu Zhang ◽  
Siyu Liu

The oxidation behavior and microstructural evolution of the nanostructure of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys prepared by spark plasma sintering were investigated by high-temperature oxidation experiments in air at 1200 °C for 100 h. The formation of Al2O3 scale was observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) line scans. The oxidation rate of Fe-Cr-Al ODS alloys is lower than that of conventional Fe-Cr-Al alloys, and the oxide layer formed on the Fe-Cr-Al alloy appeared loose and cracked, whereas the oxide layer formed on the Fe-Cr-Al ODS alloys was adherent and flat. This is due to the high density of dispersed nano-oxides hindering the diffusion of Al element and the formation of vacancies caused by them. In addition, the nano-oxides could also adhere to the oxide layer. Besides, the microstructure of the Fe-Cr-Al ODS alloy had excellent stability during high-temperature oxidation.


Sign in / Sign up

Export Citation Format

Share Document