scholarly journals Revisiting the Radiosynthesis of [18F]FPEB and Preliminary PET Imaging in a Mouse Model of Alzheimer’s Disease

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 982
Author(s):  
Cassis Varlow ◽  
Emily Murrell ◽  
Jason P. Holland ◽  
Alina Kassenbrock ◽  
Whitney Shannon ◽  
...  

[18F]FPEB is a positron emission tomography (PET) radiopharmaceutical used for imaging the abundance and distribution of mGluR5 in the central nervous system (CNS). Efficient radiolabeling of the aromatic ring of [18F]FPEB has been an ongoing challenge. Herein, five metal-free precursors for the radiofluorination of [18F]FPEB were compared, namely, a chloro-, nitro-, sulfonium salt, and two spirocyclic iodonium ylide (SCIDY) precursors bearing a cyclopentyl (SPI5) and a new adamantyl (SPIAd) auxiliary. The chloro- and nitro-precursors resulted in a low radiochemical yield (<10% RCY), whereas both SCIDY precursors and the sulfonium salt precursor produced [18F]FPEB in the highest RCYs of 25% and 36%, respectively. Preliminary PET/CT imaging studies with [18F]FPEB were conducted in a transgenic model of Alzheimer’s Disease (AD) using B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J (APP/PS1) mice, and data were compared with age-matched wild-type (WT) B6C3F1/J control mice. In APP/PS1 mice, whole brain distribution at 5 min post-injection showed a slightly higher uptake (SUV = 4.8 ± 0.4) than in age-matched controls (SUV = 4.0 ± 0.2). Further studies to explore mGluR5 as an early biomarker for AD are underway.

Metallomics ◽  
2017 ◽  
Vol 9 (11) ◽  
pp. 1622-1633 ◽  
Author(s):  
Erica M. Andreozzi ◽  
Julia Baguña Torres ◽  
Kavitha Sunassee ◽  
Joel Dunn ◽  
Simon Walker-Samuel ◽  
...  

Positron emission tomography with64Cu demonstrates regionally selective delivery of copper to brain, which although modified in an Alzheimer's model, does not correlate with the location of amyloid plaques.


2020 ◽  
Vol 77 (4) ◽  
pp. 1681-1692
Author(s):  
Soohyun Chae ◽  
Jinsick Park ◽  
Min Soo Byun ◽  
Dahyun Yi ◽  
Jun Ho Lee ◽  
...  

Background: The degree of alpha attenuation from eyes-closed (EC) to eyes-open (EO) has been suggested as a neural marker of cognitive health, and its disruption has been reported in patients with clinically defined Alzheimer’s disease (AD) dementia. Objective: We tested if EC-to-EO alpha reactivity was related to cerebral amyloid-β (Aβ) deposition during the early stage of AD. Methods: Non-demented participants aged ≥55 years who visited the memory clinic between March 2018 and June 2019 (N = 143; 67.8% female; mean age±standard deviation, 74.0±7.6 years) were included in the analyses. Based on the [18F]florbetaben positron emission tomography assessment, the participants were divided into Aβ+ (N = 70) and Aβ- (N = 73) groups. EEG was recorded during the 7 min EC condition followed by a 3 min EO phase, and a Fourier transform spectral analysis was performed. Results: A significant three-way interaction was detected among Aβ positivity, eye condition, and the laterality factor on alpha-band power after adjusting for age, sex, educational years, global cognition, depression, medication use, and white matter hyperintensities on magnetic resonance imaging (F = 5.987, p = 0.016); EC-to-EO alpha reactivity in the left hemisphere was significantly reduced in Aβ+ subjects without dementia compared with the others (F = 3.984, p = 0.048). Conclusion: Among mild cognitive impairment subjects, alpha reactivity additively contributed to predict cerebral Aβ positivity beyond the clinical predictors, including vascular risks, impaired memory function, and apolipoprotein E ɛ4. These findings support that EC-to-EO alpha reactivity acts as an early biomarker of cerebral Aβ deposition and is a useful measurement for screening early-stage AD.


2020 ◽  
Vol 10 (3) ◽  
pp. 114 ◽  
Author(s):  
Eva Ausó ◽  
Violeta Gómez-Vicente ◽  
Gema Esquiva

Alzheimer’s disease (AD) is the most common cause of dementia, affecting the central nervous system (CNS) through the accumulation of intraneuronal neurofibrillary tau tangles (NFTs) and β-amyloid plaques. By the time AD is clinically diagnosed, neuronal loss has already occurred in many brain and retinal regions. Therefore, the availability of early and reliable diagnosis markers of the disease would allow its detection and taking preventive measures to avoid neuronal loss. Current diagnostic tools in the brain, such as magnetic resonance imaging (MRI), positron emission tomography (PET) imaging, and cerebrospinal fluid (CSF) biomarkers (Aβ and tau) detection are invasive and expensive. Brain-secreted extracellular vesicles (BEVs) isolated from peripheral blood have emerged as novel strategies in the study of AD, with enormous potential as a diagnostic evaluation of therapeutics and treatment tools. In addition; similar mechanisms of neurodegeneration have been demonstrated in the brain and the eyes of AD patients. Since the eyes are more accessible than the brain, several eye tests that detect cellular and vascular changes in the retina have also been proposed as potential screening biomarkers. The aim of this study is to summarize and discuss several potential markers in the brain, eye, blood, and other accessible biofluids like saliva and urine, and correlate them with earlier diagnosis and prognosis to identify individuals with mild symptoms prior to dementia.


2020 ◽  
Vol 21 (16) ◽  
pp. 5726
Author(s):  
Vince Szegeczki ◽  
Gabriella Horváth ◽  
Helga Perényi ◽  
Andrea Tamás ◽  
Zsolt Radák ◽  
...  

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with protective functions in the central nervous system and various peripheral organs. PACAP has the highest expression level in the testes, among the peripheral organs, and has a positive regulative role in spermatogenesis and in sperm motility. In the present study, we explored testicular degenerative alterations in a mouse model of Alzheimer’s disease (AD) (B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J) and demonstrated changes in PACAP-regulated signaling pathways. In addition, the effects of increased physical activity of AD (trained AD (TAD)) mice on testis were also followed. Reduced cell number and decreased thickness of basement membrane were detected in AD samples. These changes were compensated by physical activity. Expression of PACAP receptors and canonical signaling elements such as PKA, P-PKA, PP2A significantly decreased in AD mice, and altered Sox transcription factor expression was also detected. Via this signaling mechanism, physical activity compensated the negative effects of AD on the expression of type IV collagen. Our findings suggest that the testes of AD mice can be a good model of testis degeneration. Moreover, it can be an appropriate organ to follow the effects of various interventions such as physical activity on tissue regeneration and signaling alterations.


Author(s):  
Simon Couly ◽  
Morgane Denus ◽  
Mélanie Bouchet ◽  
Gilles Rubinstenn ◽  
Tangui Maurice

Abstract Background Current therapies in Alzheimer’s disease (AD), including Memantine, have proven to be only symptomatic but not curative or disease modifying. Fluoroethylnormemantine (FENM) is a structural analogue of Memantine, functionalized with a fluorine group that allowed its use as a positron emission tomography tracer. We here analyzed FENM neuroprotective potential in a pharmacological model of AD compared with Memantine. Methods Swiss mice were treated intracerebroventricularly with aggregated Aβ 25–35 peptide and examined after 1 week in a battery of memory tests (spontaneous alternation, passive avoidance, object recognition, place learning in the water-maze, topographic memory in the Hamlet). Toxicity induced in the mouse hippocampus or cortex was analyzed biochemically or morphologically. Results Both Memantine and FENM showed symptomatic anti-amnesic effects in Aβ 25-35-treated mice. Interestingly, FENM was not amnesic when tested alone at 10 mg/kg, contrarily to Memantine. Drugs injected once per day prevented Aβ 25-35-induced memory deficits, oxidative stress (lipid peroxidation, cytochrome c release), inflammation (interleukin-6, tumor necrosis factor-α increases; glial fibrillary acidic protein and Iba1 immunoreactivity in the hippocampus and cortex), and apoptosis and cell loss (Bcl-2–associated X/B-cell lymphoma 2 ratio; cell loss in the hippocampus CA1 area). However, FENM effects were more robust than observed with Memantine, with significant attenuations vs the Aβ 25-35-treated group. Conclusions FENM therefore appeared as a potent neuroprotective drug in an AD model, with a superior efficacy compared with Memantine and an absence of direct amnesic effect at higher doses. These results open the possibility to use the compound at more relevant dosages than those actually proposed in Memantine treatment for AD.


2021 ◽  
Vol 13 (577) ◽  
pp. eabc0655
Author(s):  
Justin S. Sanchez ◽  
J. Alex Becker ◽  
Heidi I. L. Jacobs ◽  
Bernard J. Hanseeuw ◽  
Shu Jiang ◽  
...  

Advances in molecular positron emission tomography (PET) have enabled anatomic tracking of brain pathology in longitudinal studies of normal aging and dementia, including assessment of the central model of Alzheimer’s disease (AD) pathogenesis, according to which TAU pathology begins focally but expands catastrophically under the influence of amyloid-β (Aβ) pathology to mediate neurodegeneration and cognitive decline. Initial TAU deposition occurs many years before Aβ in a specific area of the medial temporal lobe. Building on recent work that enabled focus of molecular PET measurements on specific TAU-vulnerable convolutional temporal lobe anatomy, we applied an automated anatomic sampling method to quantify TAU PET signal in 443 adult participants from several observational studies of aging and AD, spanning a wide range of ages, Aβ burdens, and degrees of clinical impairment. We detected initial cortical emergence of tauopathy near the rhinal sulcus in clinically normal people and, in a subset with longitudinal 2-year follow-up data (n = 104), tracked Aβ-associated spread of TAU from this site first to nearby neocortex of the temporal lobe and then to extratemporal regions. Greater rate of TAU spread was associated with baseline measures of both global Aβ burden and medial temporal lobe TAU. These findings are consistent with clinicopathological correlation studies of Alzheimer’s tauopathy and enable precise tracking of AD-related TAU progression for natural history studies and prevention therapeutic trials.


Author(s):  
V.J.A. Montpetit ◽  
S. Dancea ◽  
S.W. French ◽  
D.F. Clapin

A continuing problem in Alzheimer research is the lack of a suitable animal model for the disease. The absence of neurofibrillary tangles of paired helical filaments is the most critical difference in the processes by which the central nervous system ages in most species other than man. However, restricting consideration to single phenomena, one may identify animal models for specific aspects of Alzheimer's disease. Abnormal fibers resembling PHF have been observed in dorsal root ganglia (DRG) neurons of rats in a study of chronic ethanol intoxication and spontaneously in aged rats. We present in this report evidence that PHF-like filaments occur in ethanol-treated rats of young age. In control animals lesions similar in some respects to our observations of cytoskeletal pathology in pyridoxine induced neurotoxicity were observed.Male Wistar BR rats (Charles River Labs) weighing 350 to 400 g, were implanted with a single gastrostomy cannula and infused with a liquid diet containing 30% of total calories as fat plus ethanol or isocaloric dextrose.


Sign in / Sign up

Export Citation Format

Share Document