scholarly journals Design of Deep Eutectic Systems: A Simple Approach for Preselecting Eutectic Mixture Constituents

Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1077 ◽  
Author(s):  
Ahmad Alhadid ◽  
Liudmila Mokrushina ◽  
Mirjana Minceva

Eutectic systems offer a wide range of new (green) designer solvents for diverse applications. However, due to the large pool of possible compounds, selecting compounds that form eutectic systems is not straightforward. In this study, a simple approach for preselecting possible candidates from a pool of substances sharing the same chemical functionality was presented. First, the melting entropy of single compounds was correlated with their molecular structure to calculate their melting enthalpy. Subsequently, the eutectic temperature of the screened binary systems was qualitatively predicted, and the systems were ordered according to the depth of the eutectic temperature. The approach was demonstrated for six hydrophobic eutectic systems composed of L-menthol and monocarboxylic acids with linear and cyclic structures. It was found that the melting entropy of compounds sharing the same functionality could be well correlated with their molecular structures. As a result, when the two acids had a similar melting temperature, the melting enthalpy of a rigid acid was found to be lower than that of a flexible acid. It was demonstrated that compounds with more rigid molecular structures could form deeper eutectics. The proposed approach could decrease the experimental efforts required to design deep eutectic solvents, particularly when the melting enthalpy of pure components is not available.

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4208
Author(s):  
Ahmad Alhadid ◽  
Liudmila Mokrushina ◽  
Mirjana Minceva

Hydrophobic deep eutectic solvents (DES) have recently been used as green alternatives to conventional solvents in several applications. In addition to their tunable melting temperature, the viscosity of DES can be optimized by selecting the constituents and molar ratio. This study examined the viscosity of 14 eutectic systems formed by natural substances over a wide range of temperatures and compositions. The eutectic systems in this study were classified as ideal or non-ideal based on their solid–liquid equilibria (SLE) data found in the literature. The eutectic systems containing constituents with cyclohexyl rings were considerably more viscous than those containing linear or phenyl constituents. Moreover, the viscosity of non-ideal eutectic systems was higher than that of ideal eutectic systems because of the strong intermolecular interactions in the liquid solution. At temperatures considerably lower than the melting temperature of the pure constituents, non-ideal and ideal eutectic systems with cyclohexyl constituents exhibited considerably high viscosity, justifying the kinetic limitations in crystallization observed in these systems. Overall, understanding the correlation between the molecular structure of constituents, SLE, and the viscosity of the eutectic systems will help in designing new, low-viscosity DES.


2012 ◽  
Vol 9 (1) ◽  
pp. 43 ◽  
Author(s):  
Hueyling Tan

Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use ofpeptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study ofbiological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries ofexisting disciplines. Many self-assembling systems are rangefrom bi- andtri-block copolymers to DNA structures as well as simple and complex proteins andpeptides. The ultimate goal is to harness molecular self-assembly such that design andcontrol ofbottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes oflife and non-life science applications. Such aspirations can be achievedthrough understanding thefundamental principles behind the selforganisation and self-synthesis processes exhibited by biological systems.


2021 ◽  
Author(s):  
Dongkun Yu ◽  
Zhimin Xue ◽  
Tiancheng Mu

Various eutectic systems including eutectic metals, eutectic salts, and deep eutectic solvents have been proposed and applied in engineering, energy and environmental fields.


2018 ◽  
Vol 618 ◽  
pp. A110 ◽  
Author(s):  
J. Bodensteiner ◽  
D. Baade ◽  
J. Greiner ◽  
N. Langer

Context. Recent studies show that more than 70% of massive stars do not evolve as effectively single stars, but as members of interacting binary systems. The evolution of these stars is thus strongly altered compared to similar but isolated objects. Aims. We investigate the occurrence of parsec-scale mid-infrared nebulae around early-type stars. If they exist over a wide range of stellar properties, one possible overarching explanation is non-conservative mass transfer in binary interactions, or stellar mergers. Methods. For ∼3850 stars (all OBA stars in the Bright Star Catalogue (BSC), Be stars, BeXRBs, and Be+sdO systems), we visually inspect WISE 22 μm images. Based on nebular shape and relative position, we distinguish five categories: offset bow shocks structurally aligned with the stellar space velocity, unaligned offset bow shocks, and centered, unresolved, and not classified nebulae. Results. In the BSC, we find that 28%, 13%, and 0.4% of all O, B, and A stars, respectively, possess associated infrared (IR) nebulae. Additionally, 34/234 Be stars, 4/72 BeXRBs, and 3/17 Be+sdO systems are associated with IR nebulae. Conclusions. Aligned or unaligned bow shocks result from high relative velocities between star and interstellar medium (ISM) that are dominated by the star or the ISM, respectively. About 13% of the centered nebulae could be bow shocks seen head- or tail-on. For the rest, the data disfavor explanations as remains of parental disks, supernova remnants of a previous companion, and dust production in stellar winds. The existence of centered nebulae also at high Galactic latitudes strongly limits the global risk of coincidental alignments with condensations in the ISM. Mass loss during binary evolution seems a viable mechanism for the formation of at least some of these nebulae. In total, about 29% of the IR nebulae (2% of all OBA stars in the BSC) may find their explanation in the context of binary evolution.


The liquid-vapour equilibrium of the system methane-ethylene has been determined at 0, -42 , -78, -88 and -104° C over a wide range of pressures and the results are shown on a pressure-composition-temperature diagram and by a series of pressure-composition curves. The liquid-vapour equilibrium of the ternary system methane-ethane-ethylene has been determined at -104, -78 and 0° C. Values for the two binary systems methane-ethane and methane-ethylene and for the ternary system methane-ethane-ethylene are shown on a composite pressure-composition diagram.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3816
Author(s):  
Taleb H. Ibrahim ◽  
Muhammad A. Sabri ◽  
Nabil Abdel Jabbar ◽  
Paul Nancarrow ◽  
Farouq S. Mjalli ◽  
...  

The thermal conductivities of selected deep eutectic solvents (DESs) were determined using the modified transient plane source (MTPS) method over the temperature range from 295 K to 363 K at atmospheric pressure. The results were found to range from 0.198 W·m−1·K−1 to 0.250 W·m−1·K−1. Various empirical and thermodynamic correlations present in literature, including the group contribution method and mixing correlations, were used to model the thermal conductivities of these DES at different temperatures. The predictions of these correlations were compared and consolidated with the reported experimental values. In addition, the thermal conductivities of DES mixtures with water over a wide range of compositions at 298 K and atmospheric pressure were measured. The standard uncertainty in thermal conductivity was estimated to be less than ± 0.001 W·m−1·K−1 and ± 0.05 K in temperature. The results indicated that DES have significant potential for use as heat transfer fluids.


Author(s):  
О.Ю. Филатов ◽  
В.А. Назаров

Данная статья обобщает накопившуюся на сегодняшний день информацию о многообразии образраспознающих рецепторов, их роли в регуляции иммунной системы. Распознавание патогена врожденным иммунитетом происходит с помощью рецепторов к широкому спектру антигенов за счет выделения нескольких высоко консервативных структур микроорганизмов. Эти структуры были названы патоген-ассоциированные образы (Patogen-Associated Molecular Patterns - PAMP). Наиболее изученными являются липополисахарид грамм отрицательных бактерий (LPS), липотейхоевые кислоты, пептидогликан (PGN), CpG мотивы ДНК и РНК. Рецепторы, распознающие PAMP, называются PRR. Данная группа рецепторов также распознает молекулы, образующиеся при повреждении собственных тканей. Такие молекулярные структуры называются Damage-Associated Molecular Patterns (DAMP), или образы, ассоциированные с повреждением. В качестве DAMP могут выступать белки теплового шока, хроматин, фрагменты ДНК. В зависимости от локализации, образраспознающие рецепторы принято разделять на: расположенные на мембране Toll-подобные рецепторы (Toll-like receptors, TLR) и рецепторы лектина С-типа (C-type lectin receptors, CLR), а также расположенные в цитоплазме NOD-подобные рецепторы (NOD-like receptors, NLR) и цитоплазматические РНК- и ДНК-сенсоры. Сегодня у человека известно 10 типов TLR, часть из которых расположена на поверхности (TLR1-TLR6, TLR10) большинства клеток, в том числе макрофагов, В-лимфоцитов и дендритных клеток, а часть - в эндосомах (TLR3, TLR7-TLR9). CLR представляет из себя семейство рецепторов, расположенных на мембране и имеющих домены распознавания углеводов (CRD), или структурно сходные лектиноподобные домены типа C (CTLD). В данном семействе рецепторов принято по происхождению и структуре выделять 17 групп. CLR активно участвуют в противогрибковой иммунной защите, а также они играют роль в защите и от других типов микроорганизмов. NOD (нуклеотидсвязывающий и олигомеризационный домен)-подобные рецепторы расположены в цитоплазме. Благодаря этим рецепторам, патоген, который избежал распознавания на поверхности мембраны, сталкивается со вторым уровнем распознавания уже внутри клетки. В данной статье рассматриваются пути активации образраспознающих рецепторов, их эффекты и применение данных эффектов в медицине. This article summarizes currently available information about the variety of image-recognizing receptors and their role in regulation of the immune system. Pathogen recognition by the innate immunity is mediated by receptors to a wide range of antigens via recognition of several highly conservative structures of microorganisms. These structures were named pathogen-associated images or PAMP (pathogen-associated molecular pattern). The best studied types of such structures include lipopolysaccharide (LPS) of gram-negative bacteria, lipoteichoic acids, peptidoglycan (PGN), and CpG DNA and RNA motifs. PAMP-recognizing receptors (PRRS) are a group of receptors, which also recognize molecules released during damage of host tissues. Such molecular structures are called DAMPS (damage-associated molecular patterns) or damage-associated images. Heat shock proteins, chromatin, and DNA fragments may act as DAMPS. Depending on the localization, image-recognizing receptors are generally classified as membrane-located Toll-like receptors (TLR) and C-type lectin receptors (CLR), as well as cytoplasmic NOD-like receptors (NLR) and cytoplasmic RNA and DNA sensors. Today, 10 types of human TLR are known. Some of them are located on the surface (TLR1-TLR6, TLR10) of most cells, including macrophages, B-cells, and dendritic cells, and some are present in endosomes (TLR3, TLR7-TLR9). CLR is a family of membrane receptors that have carbohydrate recognition domains (CRD) or structurally similar lectin-like type C domains (CTLD). Seventeen groups are distinguished within this receptor family based on their origin and structure. CLRs are actively involved in antifungal immune defense and also play a role in protection against other types of microorganisms. NOD (nucleotide-binding and oligomerization domain)-like receptors are present in the cytoplasm. These receptors provide the second level of recognition inside the cell for the pathogens that have escaped recognition on the membrane surface. This article discusses activation pathways of image-recognizing receptors, their effects, and the use of such effects in medicine.


2015 ◽  
Vol 51 (46) ◽  
pp. 9459-9462 ◽  
Author(s):  
Francesca C. Sassone ◽  
Filippo M. Perna ◽  
Antonio Salomone ◽  
Saverio Florio ◽  
Vito Capriati

Functionalised primary alcohols can be obtained by a novel highly regioselective THF ring-opening transformation, which takes place from laterally lithiated intermediates, under air, and in a glycerol-based eutectic mixture.


1981 ◽  
Vol 93 ◽  
pp. 155-175 ◽  
Author(s):  
E.P.J. van den Heuvel

The various ways in which compact objects (neutron stars and black holes) can be formed in interacting binary systems are qualitatively outlined on the basis of the three major modes of binary interaction identified by Webbink (1980). Massive interacting binary systems (M1 ≳ 10–12 M⊙) are, after the first phase of mass transfer expected to leave as remnants:(i) compact stars in massive binary systems (mass ≳ 10 M⊙) with a wide range of orbital periods, as remnants of quasi-conservative mass transfer; these systems later evolve into massive X-ray binaries.(ii) short-period compact star binaries (P ~ 1–2 days) in which the companion may be more massive or less massive than the compact object; these systems have high runaway velocities (≳ 100 km/sec) and start out with highly eccentric orbits, which are rapidly circularized by tidal forces; they may later evolve into low-mass X-ray binaries;(iii) single runaway compact objects with space velocities of ~ 102 to 4.102 km/sec; these are expected to be the most numerous compact remnants.Compact star binaries may also form from Cataclysmic binaries or wide binaries in which an O-Ne-Mg white dwarf is driven over the Chandrasekhar limit by accretion.


Sign in / Sign up

Export Citation Format

Share Document