scholarly journals Thermal Conductivities of Choline Chloride-Based Deep Eutectic Solvents and Their Mixtures with Water: Measurement and Estimation

Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3816
Author(s):  
Taleb H. Ibrahim ◽  
Muhammad A. Sabri ◽  
Nabil Abdel Jabbar ◽  
Paul Nancarrow ◽  
Farouq S. Mjalli ◽  
...  

The thermal conductivities of selected deep eutectic solvents (DESs) were determined using the modified transient plane source (MTPS) method over the temperature range from 295 K to 363 K at atmospheric pressure. The results were found to range from 0.198 W·m−1·K−1 to 0.250 W·m−1·K−1. Various empirical and thermodynamic correlations present in literature, including the group contribution method and mixing correlations, were used to model the thermal conductivities of these DES at different temperatures. The predictions of these correlations were compared and consolidated with the reported experimental values. In addition, the thermal conductivities of DES mixtures with water over a wide range of compositions at 298 K and atmospheric pressure were measured. The standard uncertainty in thermal conductivity was estimated to be less than ± 0.001 W·m−1·K−1 and ± 0.05 K in temperature. The results indicated that DES have significant potential for use as heat transfer fluids.

2020 ◽  
Vol 27 (1) ◽  
pp. 86-101
Author(s):  
Salva Golgoun ◽  
Masumeh Mokhtarpour ◽  
Hemayat Shekaari

Background: The low aqueous solubility of three important drugs (betamethasone (BETA), meloxicam (MEL) and piroxicam (PIR)) have been increased by use of deep eutectic solvents (DESs) based choline chloride/urea (ChCl/U), choline chloride/ethylene glycol (ChCl/EG) and choline chloride/glycerol (ChCl/G) as new class of solvents at T = (298.15 to 313.15) K. Methods: DESs were prepared by combination of the ChCl/EG, U and G with the molar ratios: 1:2. The solubility of drugs in the aqueous DESs solutions was measured at different temperatures with shake flask method. Results: The solubility of the investigated drugs increased with increasing the weight fraction of DESs. The solubility data were correlated by e-NRTL and Wilson models. Also, the thermodynamic functions, Gibbs energy, enthalpy, and entropy of dissolution were calculated. Conclusion: At the same composition of co-solvents and temperature, the BETA, PIR and MEL solubility was highest in (ChCl/U + water), (ChCl/U + water) and (ChCl/EG + water) respectively. The calculated solubility based on these models was in good agreement with the experimental values. In addition, the results show that, the main contribution for drugs solubility in the aqueous DES solutions is the enthalpy.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5595
Author(s):  
Mohaned Aboshatta ◽  
Vitor Magueijo

Amine absorption (or amine scrubbing) is currently the most established method for CO2 capture; however, it has environmental shortcomings and is energy-intensive. Deep eutectic solvents (DESs) are an interesting alternative to conventional amines. Due to their biodegradability, lower toxicity and lower prices, DESs are considered to be “more benign” absorbents for CO2 capture than ionic liquids. In this work, the CO2 absorption capacity of choline-chloride/levulinic-acid-based (ChCl:LvAc) DESs was measured at different temperatures, pressures and stirring speeds using a vapour–liquid equilibrium rig. DES regeneration was performed using a heat treatment method. The DES compositions studied had ChCl:LvAc molar ratios of 1:2 and 1:3 and water contents of 0, 2.5 and 5 mol%. The experimental results showed that the CO2 absorption capacity of the ChCl:LvAc DESs is strongly affected by the operating pressure and stirring speed, moderately affected by the temperature and minimally affected by the hydrogen bond acceptor (HBA):hydrogen bond donator (HBD) molar ratio as well as water content. Thermodynamic properties for CO2 absorption were calculated from the experimental data. The regeneration of the DESs was performed at different temperatures, with the optimal regeneration temperature estimated to be 80 °C. The DESs exhibited good recyclability and moderate CO2/N2 selectivity.


2020 ◽  
Vol 26 (4) ◽  
pp. 423-433
Author(s):  
Hemayat Shekaari ◽  
Masomeh Mokhtarpour ◽  
Fereshteh Mokhtarpour ◽  
Saeid Faraji ◽  
Fleming Martinez ◽  
...  

Background: Deep eutectic solvents (DESs) exist a wide variety of potential and existing applications. Based on the fact that the choline chloride (ChCl) is a complex B vitamin and widely used as food additive, the choline-based DESs are generically regarded as being harmless and non-toxic. In this regard, the low aqueous solubility of celecoxib (CLX) have been increased by use of DESs as neoteric class of solvents at T = (298.15 to 313.15) K. Methods: DESs were prepared by combination of the ChCl/EG, U and G with the molar ratios: 1:2 and ChCl/MA with 1:1. The shake flask method was used to measure the solubility of CLX in the aqueous DESs solutions at different temperatures. Results: The solubility of the CLX increased with increasing the weight fraction of DESs. The observed solubility data was subjected to evaluate the relative performance of a number of models including Apelblat, Yalkowsky and Jouyban–Acree models for their correlation efficacy. Moreover, the apparent dissolution enthalpy, entropy and Gibbs free energy were obtained from the experimental solubility values. Conclusion: It was found that the solubility data was satisfactorily fitted using the mentioned models at different temperatures. The dissolution process of CLX in the studied solvent mixtures within investigated temperature range was endothermic, and the driving mechanism is the positive entropy.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 981 ◽  
Author(s):  
Ahmet Ozan Basar ◽  
Cristina Prieto ◽  
Erwann Durand ◽  
Pierre Villeneuve ◽  
Hilal Turkoglu Sasmazel ◽  
...  

The encapsulation β-carotene in whey protein concentrate (WPC) capsules through the emulsion electrospraying technique was studied, using deep eutectic solvents (DES) as solvents. These novel solvents are characterized by negligible volatility, a liquid state far below 0 °C, a broad range of polarity, high solubilization power strength for a wide range of compounds, especially poorly water-soluble compounds, high extraction ability, and high stabilization ability for some natural products. Four DES formulations were used, based on mixtures of choline chloride with water, propanediol, glucose, glycerol, or butanediol. β-Carotene was successfully encapsulated in a solubilized form within WPC capsules; as a DES formulation with choline chloride and butanediol, the formulation produced capsules with the highest carotenoid loading capacity. SEM micrographs demonstrated that round and smooth capsules with sizes around 2 µm were obtained. ATR-FTIR results showed the presence of DES in the WPC capsules, which indirectly anticipated the presence of β-carotene in the WPC capsules. Stability against photo-oxidation studies confirmed the expected presence of the bioactive and revealed that solubilized β-carotene loaded WPC capsules presented excellent photo-oxidation stability compared with free β-carotene. The capsules developed here clearly show the significant potential of the combination of DES and electrospraying for the encapsulation and stabilization of highly insoluble bioactive compounds.


Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 416 ◽  
Author(s):  
Amal Elgharbawy ◽  
Adeeb Hayyan ◽  
Maan Hayyan ◽  
Mohamed Mirghani ◽  
Hamzah Salleh ◽  
...  

Background: Natural deep eutectic solvents (NADESs) can be used for extracting a wide range of biomaterials, such as pectin. This study introduces a new generation of natural solvents for pectin extraction which could replace the conventional solvents in the food industry. Methods: In this study, NADESs were used for pectin extraction from pomelo (Citrus grandis (L.) Osbeck) peels using a sonoreactor. Definitive screening design (DSD) was used to screen the influence of time, temperature, solid/liquid ratio, and NADES/water ratio on the pectin yield and degree of esterification (DE). Results: The primary screening revealed that the best choices for the extraction were choline chloride–malonic acid (ChCl-Mal) and choline chloride–glucose–water (ChCl:Glc:W). Both co-solvents yielded 94% pectin and 52% DE after optimization at 80 °C, with 60 min of sonication, pH < 3.0, and a NADES-to-water ratio of 1:4.5 (v/v). Morphological screening showed a smooth and compact surface of the pectin from ChCl-Mal where glucose-based pectin had a rough surface and lower DE. Conclusions: NADESs proved to be promising co-solvents for pectin extraction with a high degree of esterification (>55%).


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 336
Author(s):  
Fang Bai ◽  
Chao Hua ◽  
Jing Li

The separation of benzene and cyclohexane azeotrope is one of the most challenging processes in the petrochemical industry. In this paper, deep eutectic solvents (DES) were used as solvents for the separation of benzene and cyclohexane. DES1 (1:2 mix of tetrabutylammonium bromide (TBAB) and levulinic acid (LA)), DES2 (1:2 mix of TBAB and ethylene glycol (EG)) and DES3 (1:2 mix of ChCl (choline chloride) and LA) were used as entrainers, and vapor-liquid equilibrium (VLE) measurements at atmospheric pressure revealed that a DES comprised of a 2:1 ratio of LA and TBAB could break this azeotrope with relative volatility (αij) up to 4.763. Correlation index suggested that the NRTL modelling approach fitted the experimental data very well. Mechanism of extractive distillation gained from FT-IR revealed that with hydrogen bonding and π–π bond interactions between levulinic acid and benzene could be responsible for the ability of this entrainer to break the azeotrope.


The study and sizing of sorption machine evaporators are based on the prediction of the heat transfer coefficient at atmospheric pressures, but in the literature we only find correlations modeled from experiments for a wide range of pressure, where the majority of the data are above atmospheric pressure; A review of the experiments of boiling at sub-atmospheric pressures was carried out and compared to four known correlations for three types of fluids, which are water, hydrocarbons and refrigerants; The results obtained showed deviations of the predicted data from the experimental values for three correlations and convincing results for the fourth.


Author(s):  
M. A. Toikka ◽  
A. A. Samarov ◽  
A. A. Sadaev ◽  
A. A. Senina ◽  
O. L. Lobacheva

New experimental data on the chemical equilibrium in the propionic acid - ethanol - ethyl propionate - water system at 293.15 K and atmospheric pressure are presented. Chemically equilibrium compositions corresponding to the liquid-liquid equilibrium were obtained by gas chromatographic analysis. Using the method of nuclear magnetic resonance, homogeneous chemically equilibrium compositions were determined and the concentration equilibrium constant is calculated. The surface of chemical equilibrium and the region of splitting chemically equilibrium compositions are represented in the square of the transformed concentration variables. Comparison of the data obtained in the work with the literature was carried out at 303.15 and 313.15 K. It was found that the region of such compositions decreases with increasing temperature, while the surface of chemical equilibrium does not change the shape and position in the concentration space in the temperature range 293.15-313.15 K and atmospheric pressure. Liquid-liquid equilibrium compositions have also been obtained by gas chromatographic analysis for ethanol and ethyl propionate in the pseudo-ternary system using deep eutectic solvents (DES) based on choline chloride and glycerol / urea in whole range of concentration. The analysis of the extraction properties of DES showed the highest efficiency of DES based on choline chloride and urea. Experimental data on phase equilibrium are processed using Othmer-Tobias and Hand models. The calculated correlation coefficient (more than 0.99) indicates a high internal consistency of the experimental data obtained in this work.


2019 ◽  
Vol 116 ◽  
pp. 00078 ◽  
Author(s):  
Edyta Słupek ◽  
Patrycja Makoś ◽  
Jacek Gębicki ◽  
Andrzej Rogala

Biogas from landfills and wastewater treatment facilities typically contain a wide range of volatile organic compounds (VOCs), that can cause severe operational problems when biogas is used as fuel. Among the contaminants commonly occur aromatic compounds, i.e. benzene, ethylbenzene, toluene and xylenes (BTEX). In order to remove BTEX from biogas, different processes can be used. A promising process for VOCs removal is their absorption in deep eutectic solvents (DES). In this work, three DES: ([ChCl] U TEG [choline chloride]:urea:tetraethylene glycol (1:2:2), [ChCl] U [choline chloride]:urea (1:2), [ChCl] DEG [choline chloride]:diethylene glycol (1:2)) and water were tested to toluene absorption in concentration of 2000 ppm v/v in nitrogen stream. The results demonstrated the high absorption capacity of toluene using DES based on glycols.


Sign in / Sign up

Export Citation Format

Share Document