scholarly journals Inhibitory Effects of Aucklandia lappa Decne. Extract on Inflammatory and Oxidative Responses in LPS-Treated Macrophages

Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1336
Author(s):  
Jae Sung Lim ◽  
Sung Ho Lee ◽  
Sang Rok Lee ◽  
Hyung-Ju Lim ◽  
Yoon-Seok Roh ◽  
...  

Aucklandia lappa Decne., known as “Mok-hyang” in Korea, has been used for the alleviation of abdominal pain, vomiting, diarrhea, and stress gastric ulcers in traditional oriental medicine. We investigated the anti-inflammatory and antioxidative effects of the ethanol extract of Aucklandia lappa Decne. (ALDE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. ALDE significantly inhibited the LPS-induced nitric oxide (NO) production and reduced inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. The production of other proinflammatory mediators, including COX-2, interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α, was reduced by ALDE in LPS-stimulated RAW 264.7 cells. The mechanism underlying the anti-inflammatory effects of ALDE was elucidated to be the suppression of LPS-induced nuclear translocation of p65, followed by the degradation of IκB and the inhibition of the phosphorylation of mitogen-activated protein kinases (MAPK). In addition, ALDE showed enhanced radical scavenging activity. The antioxidant effect of ALDE was caused by the enhanced expression of heme oxygenase (HO-1) via stabilization of the expression of the nuclear transcription factor E2-related factor 2 (Nrf2) pathway. Collectively, these results indicated that ALDE not only exerts anti-inflammatory effects via the suppression of the NF-κB and MAPK pathways but also has an antioxidative effect through the activation of the Nrf2/HO-1 pathway.

2021 ◽  
Vol 11 (10) ◽  
pp. 4711
Author(s):  
Woo Jin Lee ◽  
Wan Yi Li ◽  
Sang Woo Lee ◽  
Sung Keun Jung

Until now, the physiological effects of Soroseris hirsuta were primarily unknown. Here we have evaluated the anti-inflammatory and antioxidant effects of Soroseris hirsuta extract (SHE) on lipopolysaccharide (LPS)-activated murine macrophages RAW 264.7 cells. SHE inhibited nitric oxide expression and inducible nitric oxide synthase expression in RAW 264.7 cells treated with LPS. Moreover, SHE suppressed LPS-induced phosphorylation of IκB kinase, inhibitor of kappa B, p65, p38, and c-JUN N-terminal kinase. Western blot and immunofluorescence analyses showed that SHE suppressed p65 nuclear translocation induced by LPS. Furthermore, SHE inhibited the reactive oxygen species in LPS-treated RAW 264.7 cells. SHE significantly increased heme oxygenase-1 expression and the nuclear translocation of nuclear factor erythroid 2-related factor 2. SHE suppressed LPS-induced interleukin-1β mRNA expression in RAW 264.7 cells. Thus, SHE is a promising nutraceutical as it displays anti-inflammatory and antioxidant properties.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chih-Hsuan Hsia ◽  
Thanasekaran Jayakumar ◽  
Wan-Jung Lu ◽  
Joen-Rong Sheu ◽  
Chih-Wei Hsia ◽  
...  

Objective. Oxidative stress-mediated inflammatory events involve in the progress of several diseases such as asthma, cancers, and multiple sclerosis. Auraptene (AU), a natural prenyloxycoumarin, possesses numerous pharmacological activities. Here, the anti-inflammatory effects of AU were investigated in lipoteichoic acid- (LTA-) induced macrophage cells (RAW 264.7). Methods. The expression of cyclooxygenase (COX-2), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and inducible nitric oxide synthase (iNOS) and the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, c-Jun N-terminal kinase (JNK), heme oxygenase (HO-1), p65, and IκBα were all identified by western blotting assay. The level of nitric oxide (NO) was measured by spectrometer analysis. The nuclear translocation of p65 nuclear factor kappa B (NF-κB) was assessed by the confocal microscopic staining method. Native polyacrylamide gel electrophoresis was performed to perceive the activity of antioxidant enzyme catalase (CAT). Results. AU expressively reduced NO production and COX-2, TNF-α, IL-1 β, and iNOS expression in LTA-stimulated cells. AU at higher concentration (10 µM) inhibited ERK and JNK, but not p38 phosphorylation induced by LTA. Moreover, AU blocked IκB and p65 phosphorylation, and p65 nuclear translocation. However, AU pretreatment was not effective on antioxidant HO-1 expression, CAT activity, and reduced glutathione (GSH, a nonenzymatic antioxidant), in LTA-induced RAW 264.7 cells. Conclusion. The findings of this study advocate that AU shows anti-inflammatory effects via reducing NF-κB/MAPKs signaling pathways.


2020 ◽  
Vol 23 (1) ◽  
Author(s):  
Lei Wang ◽  
You-Jin Jeon ◽  
Jae-Il Kim

Abstract Background Inflammation plays a crucial role in the pathogenesis of many diseases such as arthritis and atherosclerosis. In the present study, we evaluated anti-inflammatory activity of sterol-rich fraction prepared from Spirogyra sp., a freshwater green alga, in an effort to find bioactive extracts derived from natural sources. Methods The sterol content of ethanol extract of Spirogyra sp. (SPE) was enriched by fractionation with hexane (SPEH), resulting 6.7 times higher than SPE. Using this fraction, the in vitro and in vivo anti-inflammatory activities were evaluated in lipopolysaccharides (LPS)-stimulated RAW 264.7 cells and zebrafish. Results SPEH effectively and dose-dependently decreased the production of nitric oxide (NO) and prostaglandin E2 (PGE2). SPEH suppressed the production of pro-inflammatory cytokines including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-1β through downregulating nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW 264.7 cells without cytotoxicity. The in vivo test results indicated that SPEH significantly and dose-dependently reduced reactive oxygen species (ROS) generation, cell death, and NO production in LPS-stimulated zebrafish. Conclusions These results demonstrate that SPEH possesses strong in vitro and in vivo anti-inflammatory activities and has the potential to be used as healthcare or pharmaceutical material for the treatment of inflammatory diseases.


Author(s):  
Adek Zamrud Adnan ◽  
Muhammad Taher ◽  
Tika Afriani ◽  
Annisa Fauzana ◽  
Dewi Imelda Roesma ◽  
...  

 Objective: The aim of this study was to investigate in vitro anti-inflammatory activity of tinocrisposide using lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophage cells. Tinocrisposide is a furano diterpene glycoside that was isolated in our previous study from Tinospora crispa.Methods: Anti-inflammatory effect was quantified spectrometrically using Griess method by measuring nitric oxide (NO) production after the addition of Griess reagent.Results: The sample concentrations of 1, 5, 25, 50, and 100 μM and 100 μM of dexamethasone (positive control) have been tested against the LPS-stimulated RAW 264.7 cells, and the results showed NO level production of 39.23, 34.00, 28.9, 20.25, 16.3, and 13.68 μM, respectively, and the inhibition level of 22.67, 33.00, 43.03, 60.10, 68.00, and 73%, respectively.Conclusions: From the study, it could be concluded that tinocrisposide was able to inhibit the formation of NO in the LPS-stimulated RAW 264.7 cells in concentration activity-dependent manner, with half-maximal inhibition concentration 46.92 μM. It can be developed as anti-inflammatory candidate drug because NO is a reactive nitrogen species which is produced by NO synthase. The production of NO has been established as a mediator in inflammatory diseases.


2020 ◽  
Vol 37 (2) ◽  
pp. 88-93
Author(s):  
Na Young Jo

Background: The purpose of this study was to investigate whether Sibseonsan (SSS) is an effective anti-inflammatory, anti-wrinkling, and whitening agent.Methods: To determine whether SSS had an anti-inflammatory effect, a murine macrophage cell line was used (RAW 264.7) and production of DPPH, NO, TNF-α, and PGE2 were measured. To ascertain potential anti-wrinkle effects of SSS in these cells, collagenase and elastase production were measured. To verify whether SSS had a whitening effect, tyrosinase activity and DOPA staining were performed using a melanoma cell line (B16/F10).Results: There was no significant reduction in survival of SSS-treated RAW 264.7 cells, up to 400 μg/mL. Free radical scavenging (23.96 ± 1.85%) was observed in RAW 264.7 cells treated with SSS at a concentration of 400 μg/mL. The SSS treatment group (400 μg/mL) significantly inhibited NO production compared with the LPS stimulated treatment group. The SSS treatment of macrophage cells appeared to reduce production of TNF-α in a concentration dependent manner. There was a significant reduction in the concentration of PGE<sub>2</sub> by about 25% in the SSS treatment (400 μg/mL) group (<i>p</i> = 0.05). Compared with the control, the production of collagenase and elastase in B16/F10 cells treated with SSS (400 μg/mL) was greater by 26.37% and 45.71%, respectively. The SSS treatment (400 μg/mL) group showed a significant reduction by about 17% in tyrosinase production in B16/F10 cells. The SSS treatment group showed little change in DOPA staining.<br>Conclusion: SSS extract may be useful for the treatment and prevention of inflammatory diseases and may have anti-wrinkle and whitening effects. These results may support the use of SSS in clinical practice.


2021 ◽  
Vol 14 (8) ◽  
pp. 771
Author(s):  
Su-Hyeon Cho ◽  
SeonJu Park ◽  
Hoibin Jeong ◽  
Song-Rae Kim ◽  
Myeong Seon Jeong ◽  
...  

Juglans mandshurica Maxim., a traditional folk medicinal plant, is widely distributed in Korea and China. In our previous study, we isolated a new phenylpropanoid compound, 4-((1R,2R)-3-hydroxy-1-(4-hydroxyphenyl)-1-methoxypropan-2-yl)-2-methoxyphenol (HHMP), from J. mandshurica. In the present study, we evaluated the anti-inflammatory activity of HHMP on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and zebrafish larvae. HHMP significantly inhibited LPS-induced nitric oxide (NO) and prostaglandin E2 production in a dose-dependent manner. Moreover, HHMP treatment considerably suppressed LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2. We also demonstrated the mechanisms of HHMP inhibition of inflammatory responses in LPS-stimulated RAW 264.7 cells via Western blot analysis and immunofluorescence staining. Furthermore, HHMP significantly inhibited NO production in LPS-stimulated zebrafish larvae. Consequently, we established that HHMP significantly inhibited the LPS-induced activation of NF-κB and MAPK and the nuclear translocation of p65 in RAW 264.7 cells. Taken together, our findings demonstrate the effect of HHMP on LPS-induced inflammatory responses in vitro and in vivo, suggesting its potential to be used as a natural anti-inflammatory agent.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
An-Na Won ◽  
Sun Ah Kim ◽  
Jung Yun Ahn ◽  
Jae-Hyun Han ◽  
Chang-Hyun Kim ◽  
...  

Selaginella Herba is the dried, aerial part of Selaginella tamariscina (P.Beauv.) Spring and has been used to treat amenorrhea, abdominal pain, headaches, and hematuria in Korea. However, scientific evidence regarding the anti-inflammatory activity and action mechanism of Selaginella tamariscina is lacking. Thus, the present study was performed to investigate the anti-inflammatory and antioxidant activities of Selaginella tamariscina ethanol extract (STE) against lipopolysaccharide (LPS)-induced inflammatory responses and identify the molecular mechanism responsible. STE was prepared by heating in 70% ethanol and its quality was confirmed by HPLC. STE dose-dependently inhibited the productions of inflammatory mediators (NO and PGE2) and proinflammatory cytokines (IL-1β and IL-6) in LPS-stimulated RAW 264.7 cells. STE markedly suppressed the phosphorylations of MAPKs, IκB-α, and NF-κB and the nuclear translocation of NF-κB induced by LPS stimulation. In addition, STE exhibited good free radical scavenging activity and prevented ROS generation by LPS. STE also upregulated the expression of Nrf2 and HO-1 and promoted the nuclear translocation of Nrf2. Taken together, STE was found to have anti-inflammatory and antioxidant effects on RAW 264.7 macrophages and the mechanism appeared to involve the MAPK, NF-κB, and Nrf2/HO-1 signaling pathways. These results suggest that STE might be useful for preventing or treating inflammatory diseases and provide scientific evidence that supports the developments of herbal prescriptions or novel natural products.


2016 ◽  
Vol 11 (10) ◽  
pp. 1934578X1601101
Author(s):  
Alev Tosun ◽  
Jaemoo Chun ◽  
Igor Jerković ◽  
Zvonimir Marijanović ◽  
Maurizio A. Fenu ◽  
...  

The anti-inflammatory activity of the essential oils from Seseli corymbosum subsp. corymbosum Pall. ex Sm. (SC) and Seseli gummiferum Boiss. & Heldr. subsp. corymbosum (SG) was investigated for the first time on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The main constituents (determined by GC-FID and GC-MS analyses) were germacrene D (54.1%) and sabinene (22.4%) in SG oil and β-phellandrene (29.2%), α-phellandrene (8.2%) and germacrene D (2.5%) in SC oil. SC and SG oils inhibited nitric oxide (NO) production with IC50 values of 56.1 and 108.2 μg/mL, respectively. The oils also inhibited prostaglandin E2 (PGE2) with IC50 values of 49.4 μg/mL (SC oil) and 95.5 μg/mL (SG oil). The inhibitory effect of SC and SG oils was accompanied by dose-dependent decreases of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions in LPS-induced RAW 264.7 cells. The research of the reporter gene assay on nuclear factor κB (NF-κB) showed that SC and SG oils inhibited NF-κB transcriptional activity. The obtained results suggest that SC and SG oils exert the anti-inflammatory effects in LPS-stimulated RAW 264.7 cells by suppressing NF-κB activation.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1519-1519
Author(s):  
Sarah Cox ◽  
Leela Noronha ◽  
Joaquin De Leon ◽  
Aubrey Gilchrist ◽  
Seong-Ho Lee ◽  
...  

Abstract Objectives The objective was to evaluate the potential anti-inflammatory effects of Sorghum polyphenolic extracts on raw 264.7 cells. Methods Sorghum polyphenols were extracted using a 70% ETOH and 5% citric acid solvent. Raw 264.7 cells were treated with either vehicle 1.25, or 0.625 mg/ml polyphenol extract from either a novel high polyphenol sorghum or SC84. Supernatant was harvested and Nitric Oxide was measured at a 12 hour time point. ELISA assay was performed to measure the concentrations of 12 anti-inflammatory associated cytokines. Cell morphology changes were observed at 3, 6, 12, and 24 hours using light microscopy. 84 genes associated with inflammation were measured via QPCR. Western blot analysis measured the expression of LC3 as well as STAT1, STAT3 and NF-kB nuclear translocation. Results Nitric Oxide was reduced by the sorghum extract (not significant). Cell morphology changed by  developing vacuole like structures and an apparent decrease in cell number. ELISA analysis showed that Il-6 and Il-10 were significantly reduced in all treatments. SC84 extract showed an increase in G-CSF production in activated macrophages. QPCR revealed LPS and IFNY activated cells treated with HP extract showed an increase in the expression of 9 and decreased expression of 14 cytokine related genes compared to cells that had only been activated by LPS and IFN Y. When LPS and IFN Y activated cells were cotreated with SC84 extract, 15 cytokine related genes were upregulated and 16 cytokine related genes were downregulated. LC3 expression was measured via western blot and showed a dose dependent with 1.25 mg/ml showing statistical significance. STAT3 nuclear translocation induce by LPS/IFN Y was attenuated by sorghum polyphenols. Conclusions The sorghum polyphenols modulated immune response via a reduction in Th2 promoting cytokines IL-6 and IL-10. LC3 II expression increased with the concentration of the HP polyphenol extract treatment, suggesting autophagy. Funding Sources All funding was provided by the United States Department of Agriculture.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Kwang-Il Park ◽  
Sang-Rim Kang ◽  
Hyeon-Soo Park ◽  
Do Hoon Lee ◽  
Arulkumar Nagappan ◽  
...  

Lonicera japonica THUNB., which abundantly contains polyphenols, has been used as a traditional medicine for thousands of years in East Asian countries because of the anti-inflammation properties. This study aimed to investigate the anti-inflammatory mechanism of polyphenol components isolated from KoreaL. japonica T.by nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) pathway. Polyphenols significantly decreased lipopolysaccharide- (LPS-) induced mRNA and protein expression of inducible nitric oxide synthase and cyclooxygenase-2, as well as mRNA expression of tumor necrosis factor-alpha, interleukin- (IL-) 1β, and IL-6. Moreover, polyphenols inhibited nuclear translocation of NF-κB p65, phosphorylation/degradation of the inhibitor ofκB, and phosphorylation of p38 MAPK, whereas the extracellular signal-regulated kinase and Janus N-terminal kinase were not affected. These results indicate that polyphenol components isolated from KoreaL. japonica T.should have anti-inflammatory effect on LPS-stimulated RAW 264.7 cells through the decrease of proinflammatory mediators expression by suppressing NF-κB and p38 MAPK activity.


Sign in / Sign up

Export Citation Format

Share Document