scholarly journals Preparation of Nanocellulose Using Ionic Liquids: 1-Propyl-3-Methylimidazolium Chloride and 1-Ethyl-3-Methylimidazolium Chloride

Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1544 ◽  
Author(s):  
Marta Babicka ◽  
Magdalena Woźniak ◽  
Krzysztof Dwiecki ◽  
Sławomir Borysiak ◽  
Izabela Ratajczak

Cellulose nanocrystals were prepared using ionic liquids (ILs), 1-ethyl-3-methylimidazolium chloride [EMIM][Cl] and 1-propyl-3-methylimidazolium chloride [PMIM][Cl], from microcrystalline cellulose. The resultant samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD results showed that nanocellulose obtained by treatment with both ILs preserved basic cellulose I structure, but crystallinity index of samples (except for Sigmacell treated with [EMIM][Cl]) was lower in comparison to the starting microcrystalline cellulose. The DLS results indicated noticeably smaller particle sizes of prepared cellulose for material treated with [PMIM][Cl] compared to cellulose samples hydrolyzed with [EMIM][Cl], which were prone to agglomeration. The obtained nanocellulose had a rod-like structure that was confirmed by electron microscopy analyses. Moreover, the results described in this paper indicate that cation type of ILs influences particle size and morphology of cellulose after treatment with ionic liquids.

2014 ◽  
Vol 602-603 ◽  
pp. 19-22 ◽  
Author(s):  
Lin Qiang Gao ◽  
Hai Yan Chen ◽  
Zhen Wang ◽  
Xin Zou

Nanoscale LiTaO3 powders with perovskite structure were synthesized using the solvothermal technique with glycol as solvent at 240°C for 12h. The powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). XRD was used to elucidate room temperature structures using Rietveld refinement. The powders were pure single pervoskite phase with high crystallinity. FESEM and TEM were used to determine particle size and morphology. The average LiTaO3 grain size was estimated to be < 200nm, and TEM images indicated that LiTaO3 particles had a brick-like morphology. In addition, the effect of the temperature on the LiTaO3 power characterisitics was also detailed studied.


2019 ◽  
Author(s):  
◽  
Gcinile Pretty Mdletshe

Lignocellulosic materials have the potential to partly replace fossil-based resources as a source of bio-fuels, bio-chemicals, bio-composites and other bio-products. In this study, ionic liquids (ILs) were used in the pre-treatment of ground sugarcane bagasse (SCB). The ILs used were 1-butyl-3-methylimidazolium hydrogen sulphate or 1-butyl-3-methylimidazolium methyl sulphate at varied times. The ILs were able to remove lignin and hemicellulose from biomass. The IL [bmim][HSO4] had the highest amount of lignin removed after 12 h than all samples. Moreover, it resulted in the greatest cellulose amount. Milled SCB was pre-treated with IL/dimethyl sulphoxide (DMSO) mixtures. The IL [bmim][HSO4] was able to produce cellulose nanocrystals (CNCs) at 90 % IL and 100 % IL. The other IL failed to produce CNCs. Freeze drying the CNC suspension showed morphologies of long fibrous structures and rods which were evident in the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. The crystallinity index of cellulose in the form of CNCs was calculated from powder X-ray diffraction (P-XRD). Thermal analysis of the CNCs was obtained from thermogravimetric analysis (TGA). Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was used to confirm the absence of lignin and hemicellulose in CNCs. The size distribution of CNCs was obtained by using a dynamic light scattering (DLS) which showed that all the CNCs for the 100 % IL [bmim][HSO4] pre-treatment had a length < 500 nm. It was found that [bmim][HSO4], with no DMSO, was the most effective in terms of cellulose dissolution and the crystal sizes of CNCs. The conversion of cellulose to CNCs was successful with a 80 % and 100 % conversion for 90 % [bmim][HSO4]/DMSO and 100 % [bmim][HSO4], respectively.


2021 ◽  
Author(s):  
Songlin Wang ◽  
Qian Wang ◽  
Yao Kai

Abstract Cellulose nanocrystals (CNC) were first isolated from microcrystalline cellulose (MCC) by p-toluene sulfonic acid (p-TsOH) hydrolysis. Cellulose II nanocrystal (CNC II) and cellulose III nanocrystal (CNC III) were then formed by swelling the obtained cellulose I nanocrystal (CNC I) in concentrated sodium hydroxide solutions and ethylenediamine (EDA) respectively. The properties of CNC I, CNC II and CNC III were subjected to comprehensive characterization by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The results indicated that CNC I, CNC II and CNC III obtained in this research had high crystallinity index and good thermal stability. The degradation temperatures of the resulted CNC I, CNC II and CNC III were 300 ℃, 275 ℃ and 242 ℃, respectively. No ester bonds were found in the resulted CNC. CNC prepared in this research also had large aspect ratio and high negative zeta potential.


2013 ◽  
Vol 774-776 ◽  
pp. 677-681
Author(s):  
Han Tao Liao ◽  
You Rong Wang ◽  
Jia Wang ◽  
Xiao Fang Qian ◽  
Si Qing Cheng

The particle size and morphology have a strong influence on the electrochemical performance of FeS2electrodes. In this paper, a simple one-pot solvothermal method is reported for the synthesis of macroporous pyrite nanotubes for the first time. The phase composition, morphology and structure of the as-obtained products were studied by the energy dispersive spectroscopy (EDS), scanning electron microscopy, (high-resolution) transmission electron microscopy, X-ray diffraction. The electrochemical properties of the FeS2samples were also investigated. The results demonstrated that the macroporous pyrite nanotubes delivered a higher initial discharge capacity of 925.2 mAh g-1and had good capacity retention.


2012 ◽  
Vol 1481 ◽  
pp. 45-52
Author(s):  
A. Medina ◽  
L. Béjar ◽  
G. Herrera-Pérez

ABSTRACTMagnesium hydroxide (Mg(OH)2) nanoparticles were synthesized by chemical precipitation synthesis method. The influence of the nano-sized Mg(OH)2 on the structural modification was evaluated. The formation of Mg(OH)2 crystals were evaluated by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The particle size and morphology of Mg(OH)2was confirmed by high resolution transmission electron microscopy (HRTEM). The crystalline structure of nanoparticles was characterized by fast Fourier transform (FFT) and X-Ray diffraction (XRD), like analytical tools.


2012 ◽  
Vol 21 (01) ◽  
pp. 1250002 ◽  
Author(s):  
NGUYEN MANH HUNG ◽  
LAM THI HANG ◽  
NGUYEN VAN KHANH ◽  
DU THI XUAN THAO ◽  
NGUYEN VAN MINH

We investigate the effects of calcination time and concentration of solution on the structure, as well as optical properties in ZnWO4 nanopowder prepared by hydrothermal method. The prepared powder were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman scattering, optical absorption and photoluminescent spectroscopy (PL). It is shown that the grain size and morphology of ZnWO4 nanopowder can be controlled by adjusting the reaction time as well as the concentration of the solution. The resultant sample is a pure phase of ZnWO4 without any impurities. The result showed that the optical property of ZnWO4 nanopowders depend on their grain size. The optical band gap becomes narrower as the reaction time or concentration of solution is increased. The improved PL properties of the ZnWO4 crystallites can be obtained with the optimal concentration of the solution.


2016 ◽  
Vol 35 (6) ◽  
pp. 559-566 ◽  
Author(s):  
Elaheh Esmaeili ◽  
Mohammad Sabet ◽  
Masoud Salavati-Niasari ◽  
Kamal Saberyan

AbstractPbS nanostructures were synthesized successfully via hydrothermal approach with a new precursor. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–Vis diffuse reflectance spectroscopy (DRS). The effect of different sulfur sources were investigated on product size and morphology.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
T. Prakash ◽  
R. Jayaprakash ◽  
G. Neri ◽  
Sanjay Kumar

ZnO nanostructures have been successfully prepared by a microwave irradiation method. The role of albumen as a template in addressing the size and morphology of ZnO has been investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TG-DTA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. A heterogeneous mixture of Zn(OH)2 and ZnO was obtained in absence of albumen. Pure ZnO nanostructures, consisting of rod- and whisker-like nanoparticles embedded in a sheet matrix, were obtained in the presence of albumen. Optical and photoluminescence (PL) properties of the synthesized samples were also compared. Results obtained indicate that the microwave-assisted method is a promising low temperature, cheap, and fast method for the production of ZnO nanostructures.


Author(s):  
Sunardi Sunardi ◽  
Wiwin Tyas Istikowati ◽  
Norhidayah Norhidayah ◽  
Dahlena Ariyani ◽  
Azlan Kamari

Microcrystalline cellulose is an important derivative of cellulosic material obtained from wood and non-wood sources, and is used for pharmaceutical, food, cosmetics, and other industries. The aim of this study was to determine the effect of various hydrochloric acid concentrations on the characteristics of cellulose microcrystals isolated from terap wood (Artocarpus elasticus). The microcrystalline cellulose was hydrolyzed using hydrochloric acid, at concentrations of 1.5 N, 2.5 N, and 3.5 N for 15 minutes, and within a temperature range of 100-105o C. Thesamples were then analyzed for changes in color and functional groups with Fourier Transform Infrared spectroscopy (FTIR), while crystallinity index was evaluated through X-Ray Diffraction Analysis (X-RDF). The FTIR results showed similarity with commercial products, while X-Ray Diffraction confirms the highest crystallinity index in the 2.5 N of cellulose I (69.395 %) and cellulose II (82.73 %).


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Mohd Rashid ◽  
Suhail Sabir

We report the biosynthesis of silver nanoparticles (AgNPs) in a single step using edible fruit aqueous extract of P. peruviana that essentially involved the concept of green chemistry. Yellowish-brown color appeared upon adding the broth of P. peruviana to aqueous solution of 1 mM AgNO3 which indicates the formation of AgNPs. The maximum synthesis of these nanoparticles was being achieved in nearly 2 hrs at 28°C. The synthesis of AgNPs was followed by AgNPs UV-visible spectroscopy. Particle size and morphology of AgNPs were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. These studies revealed that the AgNPs characterized were spherical in shape with diameter ranging from 31 to 52 nm. The energy dispersive X-ray spectroscopy showed that the AgNPs present are approximately 63.42 percent by weight in the colloidal dispersion. The absorption spectra of the AgNPs in absence and presence of dl-alanine show a distinguish shift in surface plasmon resonance (SPR) bands. Thus, these nanoparticles may be used as a chemical sensor for dl-alanine present in the human blood.


Sign in / Sign up

Export Citation Format

Share Document