scholarly journals Identification of Selected Antibiotic Resistance Genes in Two Different Wastewater Treatment Plant Systems in Poland: A Preliminary Study

Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2851 ◽  
Author(s):  
Magdalena Pazda ◽  
Magda Rybicka ◽  
Stefan Stolte ◽  
Krzysztof Piotr Bielawski ◽  
Piotr Stepnowski ◽  
...  

Antibiotic resistance is a growing problem worldwide. The emergence and rapid spread of antibiotic resistance determinants have led to an increasing concern about the potential environmental and public health endangering. Wastewater treatment plants (WWTPs) play an important role in this phenomenon since antibacterial drugs introduced into wastewater can exert a selection pressure on antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Therefore, WWTPs are perceived as the main sources of antibiotics, ARB and ARG spread in various environmental components. Furthermore, technological processes used in WWTPs and its exploitation conditions may influence the effectiveness of antibiotic resistance determinants’ elimination. The main aim of the present study was to compare the occurrence of selected tetracycline and sulfonamide resistance genes in raw influent and final effluent samples from two WWTPs different in terms of size and applied biological wastewater treatment processes (conventional activated sludge (AS)-based and combining a conventional AS-based method with constructed wetlands (CWs)). All 13 selected ARGs were detected in raw influent and final effluent samples from both WWTPs. Significant ARG enrichment, especially for tet(B, K, L, O) and sulIII genes, was observed in conventional WWTP. The obtained data did not show a clear trend in seasonal fluctuations in the abundance of selected resistance genes in wastewaters.

2021 ◽  
Author(s):  
Miguel Uyaguari

Abstract Background: Wastewater treatment plants are an essential part of maintaining the health and safety of the general public. However, they are also an anthropogenic source of antibiotic resistance genes. In this study, we characterized the resistome, the distribution of classes 1-3 integron-integrase genes (intI1, intI2, and intI3) as mobile genetic element biomarkers, and the bacterial and phage community compositions in the North End Sewage Treatment Plant in Winnipeg, Manitoba. Samples were collected from raw sewage, returned activated sludge, final effluent, and dewatered sludge. A total of 28 bacterial and viral metagenomes were sequenced over two seasons, fall and winter. Integron-integrase genes, the 16S rRNA gene, and the coliform beta-glucuronidase gene were also quantified during this time period. Results: Bacterial classes observed above 1% relative abundance in all treatments were Actinobacteria (39.24% ± 0.25%), Beta-proteobacteria (23.99% ± 0.16%), Gamma-proteobacteria (11.06% ± 0.09%), and Alpha-proteobacteria (9.18 ± 0.04%). Families within the Caudovirales order: Siphoviridae (48.69% ± 0.10%), Podoviridae (23.99% ± 0.07%), and Myoviridae (19.94% ± 0.09%) were the dominant phage observed throughout the NESTP. The most abundant bacterial genera (in terms of average percent relative abundance) in influent, returned activated sludge, final effluent, and sludge, respectively, includes Mycobacterium (37.4%, 18.3%, 46.1%, and 7.7%), Acidovorax (8.9%, 10.8%, 5.4%, and 1.3%), and Polaromonas (2.5%, 3.3%, 1.4%, and 0.4%).The most abundant class of antibiotic resistance in bacterial samples was tetracycline resistance (17.86% ± 0.03%) followed by peptide antibiotics (14.24% ± 0.03%), and macrolides (10.63% ± 0.02%). Similarly, the phage samples contained a higher prevalence of macrolide (30.12% ± 0.30%), peptide antibiotic (10.78% ± 0.13%), and tetracycline (8.69% ± 0.11%) resistance. In addition, intI1 was the most abundant integron-integrase gene throughout treatment (1.14x104 gene copies/mL) followed by intI3 (4.97x103 gene copies/mL) while intI2 abundance remained low (6.4x101 gene copies/mL).Conclusions: The wastewater treatment plant successfully reduced the abundance of bacteria, DNA bacteriophages, and antibiotic resistance genes although many of them still remained in effluent and biosolids. The presence of integron-integrase genes throughout treatment and in effluent suggests that antibiotic resistance genes could be actively disseminating resistance between both environmental and pathogenic bacteria.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3269 ◽  
Author(s):  
Jess A. Millar ◽  
Rahul Raghavan

We explored the bacterial diversity of untreated sewage influent samples of a wastewater treatment plant in Tucson, AZ and discovered that Arcobacter cryaerophilus, an emerging human pathogen of animal origin, was the most dominant bacterium. The other highly prevalent bacteria were members of the phyla Bacteroidetes and Firmicutes, which are major constituents of human gut microbiome, indicating that bacteria of human and animal origin intermingle in sewage. By assembling a near-complete genome of A. cryaerophilus, we show that the bacterium has accumulated a large number of antibiotic resistance genes (ARGs) probably enabling it to thrive in the wastewater. We also determined that a majority of ARGs was being expressed in sewage, suggestive of trace levels of antibiotics or other stresses that could act as a selective force that amplifies multidrug resistant bacteria in municipal sewage. Because all bacteria are not eliminated even after several rounds of wastewater treatment, ARGs in sewage could affect public health due to their potential to contaminate environmental water.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 650 ◽  
Author(s):  
Ioanna Zerva ◽  
Ioanna Alexandropoulou ◽  
Maria Panopoulou ◽  
Paraschos Melidis ◽  
Spyridon Ntougias

Wastewater treatment plants (WWTPs) highly contribute to the transmission of antibiotic resistance genes (ARGs) in the environment. In this work, the diversity of ermF, ermB, sul1 and int1-enconding genes was examined in the influent, the mixed liquor and the effluent of a full-scale WWTP. Based on the clones analyzed, similar genotypes were recorded at all process stages. However, distinct genotypes of int1 were responsible for the expression of sul1 and ermF genes in Gammaproteobacteria and Bacteroidetes, respectively. Due to the detection of similar ARGs profiles throughout the biological process, it is concluded that additional treatment is needed for their retention.


2021 ◽  
Vol 26 ◽  
Author(s):  
Maria Camila Zapata Zúñiga ◽  
Miguel Angel Parra-Pérez ◽  
Johan Alexander Álvarez-Berrio ◽  
Nidia Isabel Molina-Gómez

This study aimed to evaluate the efficiency of technologies for removing antibiotics, antibiotic-resistant bacteria and their antibiotic resistance genes, and the countries where they have been developed. For this purpose, was conducted a systematic review to identify the tertiary treatments to remove the above-mentioned pollutants. The ScienceDirect and Scopus databases were used as sources of information, taking into account only experimental research from 2006 to 2019 and technologies with removal rates higher than 70% to the information analyses. From the analysis of 9 technologies evaluated, in a set of 47 investigations, photo-Fenton, and electrochemical treatments were found to be the most efficient in the removal of antibiotics; gamma radiation and photocatalysis with TiO2 and UV revealed better results in the removal of resistant microbial agents and their resistance genes, with efficiencies of 99.9%. As one of the largest producers and consumers of antibiotics, China appears to be the country with the most scientific research on the area. The importance of innovation in wastewater treatment processes to achieve better results in the remotion of antibiotics, antibiotic-resistant bacteria, and their resistance genes is highlighted, given the effects on the aquatic ecosystems and public health.


2019 ◽  
Vol 17 (6) ◽  
pp. 910-920 ◽  
Author(s):  
Lihua Sun ◽  
Pengfei Shi ◽  
Ning He ◽  
Qiwei Zhang ◽  
Xi Duan

Abstract Antibiotic resistance genes (ARGs), as emerging environmental contaminants, are becoming a threat to human health. In this study, the combined processes of powdered activated carbon (PAC)/biological PAC (BPAC)–ultrafiltration (UF) were adopted to reduce the levels of ARGs in secondary effluents from a wastewater treatment plant. The removal of dissolved organic carbon (DOC) and the change of normalized flux in the UF process were investigated. In addition, the structural characteristics of the microorganisms of the BPAC were analyzed. The results showed that the appropriate dosage of PAC and BPAC was 40 mg/L. At this dosage, PAC/BPAC–UF combined processes could effectively remove the ARGs in secondary effluents by 1.26–2.69-log and 1.55–2.97-log, respectively; and the removal rates of DOC would be 60.7% and 54.1%, respectively. Relative to the direct UF, the membrane fluxes of the two combined processes were increased by 15.6% and 25.1%, respectively. Significant removal correlations were found between ARGs, intI1, DOC and 16SrDNA. These results revealed that the PAC/BPAC–UF combined process might play a promising role in ARG reduction in secondary effluents from wastewater treatment plants.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1729 ◽  
Author(s):  
Ocean Thakali ◽  
John P. Brooks ◽  
Shalina Shahin ◽  
Samendra P. Sherchan ◽  
Eiji Haramoto

Wastewater treatment plants (WWTPs) represent all known types of antibiotic resistance mechanisms and are considered as the critical points for the spread of antibiotic resistance genes (ARGs). The purpose of this study is to investigate the removal of a Class 1 integrase gene (intI1) and a selected set of ARGs (blaTEM, ermF, mecA, and tetA) at two conventional WWTPs by using chlorination in Louisiana, USA. We collected 69 wastewater samples (23 each from influent, secondary effluent, and final effluent) and determined the concentrations of ARGs by using quantitative polymerase chain reaction. All tested ARGs, except for mecA, were detected in 83–96% and 30–65% of influent and final effluent samples, respectively. Although the ARGs underwent approximately 3-log10 reduction, two WWTPs on an average still released 3.3 ± 1.7 log10 copies/mL of total ARGs studied in the effluents. Chlorination was found to be critical in the significant reduction of total ARGs (p < 0.05). Correlation analysis and the ability of intI1 to persist through the treatment processes recommend the use of intI1 as a marker of ARGs in effluents to monitor the spread of antibiotic resistance in effluents. Our study suggests that conventional WWTPs using chlorination do not favor the proliferation of antibiotic resistance bacteria and ARGs during wastewater treatment.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 478
Author(s):  
Laura Wengenroth ◽  
Fanny Berglund ◽  
Hetty Blaak ◽  
Mariana Carmen Chifiriuc ◽  
Carl-Fredrik Flach ◽  
...  

Antibiotic resistance has become a serious global health threat. Wastewater treatment plants may become unintentional collection points for bacteria resistant to antimicrobials. Little is known about the transmission of antibiotic resistance from wastewater treatment plants to humans, most importantly to wastewater treatment plant workers and residents living in the vicinity. We aim to deliver precise information about the methods used in the AWARE (Antibiotic Resistance in Wastewater: Transmission Risks for Employees and Residents around Wastewater Treatment Plants) study. Within the AWARE study, we gathered data on the prevalence of two antibiotic resistance phenotypes, ESBL-producing E. coli and carbapenemase-producing Enterobacteriaceae, as well as on their corresponding antibiotic resistance genes isolated from air, water, and sewage samples taken from inside and outside of different wastewater treatment plants in Germany, the Netherlands, and Romania. Additionally, we analysed stool samples of wastewater treatment plant workers, nearby residents, and members of a comparison group living ≥1000 m away from the closest WWTP. To our knowledge, this is the first study investigating the potential spread of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes from WWTPs to workers, the environment, and nearby residents. Quantifying the contribution of different wastewater treatment processes to the removal efficiency of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes will provide us with evidence-based support for possible mitigation strategies.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Paul Jankowski ◽  
Jaydon Gan ◽  
Tri Le ◽  
Michaela McKennitt ◽  
Audrey Garcia ◽  
...  

Abstract Background Wastewater treatment plants are an essential part of maintaining the health and safety of the general public. However, they are also an anthropogenic source of antibiotic resistance genes. In this study, we characterized the resistome, the distribution of classes 1–3 integron-integrase genes (intI1, intI2, and intI3) as mobile genetic element biomarkers, and the bacterial and phage community compositions in the North End Sewage Treatment Plant in Winnipeg, Manitoba. Samples were collected from raw sewage, returned activated sludge, final effluent, and dewatered sludge. A total of 28 bacterial and viral metagenomes were sequenced over two seasons, fall and winter. Integron-integrase genes, the 16S rRNA gene, and the coliform beta-glucuronidase gene were also quantified during this time period. Results Bacterial classes observed above 1% relative abundance in all treatments were Actinobacteria (39.24% ± 0.25%), Beta-proteobacteria (23.99% ± 0.16%), Gamma-proteobacteria (11.06% ± 0.09%), and Alpha-proteobacteria (9.18 ± 0.04%). Families within the Caudovirales order: Siphoviridae (48.69% ± 0.10%), Podoviridae (23.99% ± 0.07%), and Myoviridae (19.94% ± 0.09%) were the dominant phage observed throughout the NESTP. The most abundant bacterial genera (in terms of average percent relative abundance) in influent, returned activated sludge, final effluent, and sludge, respectively, includes Mycobacterium (37.4%, 18.3%, 46.1%, and 7.7%), Acidovorax (8.9%, 10.8%, 5.4%, and 1.3%), and Polaromonas (2.5%, 3.3%, 1.4%, and 0.4%). The most abundant class of antibiotic resistance in bacterial samples was tetracycline resistance (17.86% ± 0.03%) followed by peptide antibiotics (14.24% ± 0.03%), and macrolides (10.63% ± 0.02%). Similarly, the phage samples contained a higher prevalence of macrolide (30.12% ± 0.30%), peptide antibiotic (10.78% ± 0.13%), and tetracycline (8.69% ± 0.11%) resistance. In addition, intI1 was the most abundant integron-integrase gene throughout treatment (1.14 × 104 gene copies/mL) followed by intI3 (4.97 × 103 gene copies/mL) while intI2 abundance remained low (6.4 × 101 gene copies/mL). Conclusions Wastewater treatment successfully reduced the abundance of bacteria, DNA phage and antibiotic resistance genes although many antibiotic resistance genes remained in effluent and biosolids. The presence of integron-integrase genes throughout treatment and in effluent suggests that antibiotic resistance genes could be actively disseminating resistance between both environmental and pathogenic bacteria.


Author(s):  
April Murphy ◽  
Daniel Barich ◽  
M. Siobhan Fennessy ◽  
Joan L. Slonczewski

Antibiotic resistance is a growing problem worldwide, with frequent transmission between pathogens and environmental organisms. Rural rivers can support high levels of recreational use by people unaware of inputs from treated wastewater, while wastewater treatment plants (WWTPs) can generate a small but significant portion of flow volume into a river surrounded by forest and agriculture.


2018 ◽  
Author(s):  
Vanessa R. Marcelino ◽  
Michelle Wille ◽  
Aeron C. Hurt ◽  
Daniel González-Acuña ◽  
Marcel Klaassen ◽  
...  

AbstractAntibiotic resistance is rendering common bacterial infections untreatable. Wildlife can incorporate and disperse antibiotic resistant bacteria in the environment, such as water systems, which in turn serve as reservoirs of resistance genes for human pathogens. We used bulk RNA-sequencing (meta-transcriptomics) to assess the diversity and expression levels of functionally active resistance genes in the microbiome of birds with aquatic behavior. We sampled birds across a range of habitats, from penguins in Antarctica to ducks in a wastewater treatment plant in Australia. This revealed 81 antibiotic resistance genes in birds from all localities, including β-lactam, tetracycline and chloramphenicol resistance in Antarctica, and genes typically associated with multidrug resistance plasmids in areas with high human impact. Notably, birds feeding at a wastewater treatment plant carried the greatest resistance gene burden, suggesting that human waste, even if it undergoes treatment, contributes to the spread of antibiotic resistance genes to the wild. Differences in resistance gene burden also reflected the birds’ ecology, taxonomic group and microbial functioning. Ducks, which feed by dabbling, carried a higher abundance and diversity of resistance genes than turnstones, avocets and penguins, that usually prey on more pristine waters. In sum, this study helps to reveal the complex factors explaining the distribution of resistance genes and their exchange routes between humans and wildlife.


Sign in / Sign up

Export Citation Format

Share Document