scholarly journals Preparation and Characterization of Inclusion Complexes of β-Cyclodextrin and Phenolics from Wheat Bran by Combination of Experimental and Computational Techniques

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4275 ◽  
Author(s):  
Tuba Simsek ◽  
Bakhtiyor Rasulev ◽  
Christian Mayer ◽  
Senay Simsek

Bitterness often associated with whole wheat products may be related to phenolics in the bran. Cyclodextrins (CDs) are known to form inclusion complexes. The objective was to form inclusion complexes between β-CD and wheat phenolics. Pure phenolic acids (trans-ferulic acid (FA), caffeic acid (CA), and p-coumaric acid (CO)) and phenolic acids from wheat bran were used to investigate complex formation potential. Complexes were characterized by spectroscopy techniques, and a computational and molecular modeling study was carried out. The relative amount of complex formation between β-CD and wheat bran extract was CA > CO > FA. The phenolic compounds formed inclusion complexes with β-CDs by non-covalent bonds. The quantum-mechanical calculations supported the experimental results. The most stable complex was CO/β-CD complex. The ΔH value for CO/β-CD complex was −11.72 kcal/mol and was about 3 kcal/mol more stable than the other complexes. The QSPR model showed good correlation between binding energy and 1H NMR shift for the H5 signal. This research shows that phenolics and β-CD inclusion complexes could be utilized to improve the perception of whole meal food products since inclusion complexes have the potential to mask the bitter flavor and enhance the stability of the phenolics in wheat bran.

2019 ◽  
Vol 20 (19) ◽  
pp. 4831 ◽  
Author(s):  
Giuseppina Raffaini ◽  
Fabio Ganazzoli

Photodynamic therapy is an emerging treatment of tumor diseases. The complexes with γ-cyclodextrins (γ-CD) and fullerenes or their derivatives can be used as photosensitizers by direct injection into cancer cells. Using molecular mechanics and molecular dynamics methods, the stability and the geometry of the 2:1 complexes [(γ-CD)2/C70] are investigated analyzing the differences with the analogous C60 complexes, studied in a previous theoretical work and experimentally found to be much less efficient in cancer therapy. The inclusion complex of γ-CD and C70 has a 2:1 stoichiometry, the same as C60, but is significantly less stable and displays an unlike arrangement. In vacuo, mimicking an apolar solvent, the complex is compact, whereas in water the two γ-CDs encapsulate C70 forming a relatively stable complex by interacting through their primary rims, however exposing part of C70 to the solvent. Other higher-energy complexes with the γ-CDs facing different rims can form in water, but in all cases part of the hydrophobic C70 surface remains exposed to water. The stability and arrangement of these peculiar amphiphilic inclusion complexes having non-covalent interactions in water can be an important key for cancer therapy to enhance both the solubilization and the fullerene insertion into liposomes or cell membranes.


2011 ◽  
Vol 8 (3) ◽  
pp. 1030-1037
Author(s):  
S. Panda ◽  
S. K. Dash

The compounds 2-[5'-benzylidene-2'-phenyl-4'-oxo-1', 3'-thiazolidine]-1, 3-benzothiazole and 2-[5'-(p-N,N-dimethylamino- benzylidene)-2'-phenyl-4'-oxo-1', 3'-thiazolidine]-1, 3-benzothiazole have been synthesized in their purest forms starting from 2-aminobenzothiazole. The inclusion complexes of the above compounds have been prepared with β-cyclodextrin to increase their solubility and bioaccessibility in polar medium. The formation of inclusion complexes have been ascertained by study of spectral characteristic before and after inclusion complex formation. The stability of inclusion complexes and nature of interaction between the host and guest are known from the determination of thermodynamic parameters. Further the antibacterial and antifungal activities of the compounds are determined which is found to increase significantly after inclusion complex formation


2017 ◽  
Vol 19 (7) ◽  
pp. 5209-5221 ◽  
Author(s):  
Tânia F. G. G. Cova ◽  
Sandra C. C. Nunes ◽  
Alberto A. C. C. Pais

A MD/PMF-based procedure is designed for quantification of the interaction and respective components, guiding complex formation in water between β-CD and several naphthalene derivatives, highlighting the relevance of substituents.


1983 ◽  
Vol 22 (05) ◽  
pp. 246-250 ◽  
Author(s):  
M. Al-Hilli ◽  
H. M. A. Karim ◽  
M. H. S. Al-Hissoni ◽  
M. N. Jassim ◽  
N. H. Agha

Gelchromatography column scanning has been used to study the fractions of reduced hydrolyzed 99mTc, 99mTc-pertechnetate and 99mTc-chelate in a 99mTc-glucoheptonate (GH) preparation. A stable high labelling yield of 99mTc-GH complex in the radiopharmaceutical has been obtained with a concentration of 40-50 mg of glucoheptonic acid-calcium salt and not less than 0.45 mg of SnCl2 2 H2O at an optimal pH between 6.5 and 7.0. The stability of the complex has been found significantly affected when sodium hydroxide solution was used for the pH adjustment. However, an alternative procedure for final pH adjustment of the preparation has been investigated providing a stable complex for the usual period of time prior to the injection. The organ distribution and the blood clearance data of 99mTc-GH in rabbits were relatively similar to those reported earlier. The mean concentration of the radiopharmaceutical in both kidneys has been studied in normal subjects for one hour with a scintillation camera and the results were satisfactory.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 208
Author(s):  
Guillermo García-Díez ◽  
Roger Monreal-Corona ◽  
Nelaine Mora-Diez

The thermodynamic stability of 11 complexes of Cu(II) and 26 complexes of Fe(III) is studied, comprising the ligands pyridoxamine (PM), ascorbic acid (ASC), and a model Amadori compound (AMD). In addition, the secondary antioxidant activity of PM is analyzed when chelating both Cu(II) and Fe(III), relative to the rate constant of the first step of the Haber-Weiss cycle, in the presence of the superoxide radical anion (O2•−) or ascorbate (ASC−). Calculations are performed at the M05(SMD)/6-311+G(d,p) level of theory. The aqueous environment is modeled by making use of the SMD solvation method in all calculations. This level of theory accurately reproduces the experimental data available. When put in perspective with the stability of various complexes of aminoguanidine (AG) (which we have previously studied), the following stability trends can be found for the Cu(II) and Fe(III) complexes, respectively: ASC < AG < AMD < PM and AG < ASC < AMD < PM. The most stable complex of Cu(II) with PM (with two bidentate ligands) presents a ΔGf0 value of −35.8 kcal/mol, whereas the Fe(III) complex with the highest stability (with three bidentate ligands) possesses a ΔGf0 of −58.9 kcal/mol. These complexes can significantly reduce the rate constant of the first step of the Haber-Weiss cycle with both O2•− and ASC−. In the case of the copper-containing reaction, the rates are reduced up to 9.70 × 103 and 4.09 × 1013 times, respectively. With iron, the rates become 1.78 × 103 and 4.45 × 1015 times smaller, respectively. Thus, PM presents significant secondary antioxidant activity since it is able to inhibit the production of ·OH radicals. This work concludes a series of studies on secondary antioxidant activity and allows potentially new glycation inhibitors to be investigated and compared relative to both PM and AG.


1965 ◽  
Vol 18 (5) ◽  
pp. 651 ◽  
Author(s):  
RW Green ◽  
PW Alexander

The Schiff base, N-n-butylsalicylideneimine, extracts more than 99.8% beryllium into toluene from dilute aqueous solution. The distribution of beryllium has been studied in the pH range 5-13 and is discussed in terms of the several complex equilibria in aqueous solution. The stability constants of the complexes formed between beryllium and the Schiff base are log β1 11.1 and log β2 20.4, and the distribution coefficient of the bis complex is 550. Over most of the pH range, hydrolysis of the Be2+ ion competes with complex formation and provides a means of measuring the hydrolysis constants. They are for the reactions: Be(H2O)42+ ↔ 2H+ + Be(H2O)2(OH)2, log*β2 - 13.65; Be(H2O)42+ ↔ 3H+ + Be(H2O)(OH)3-, log*β3 -24.11.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Jinli Zhang ◽  
Yan Ding ◽  
Haizhou Dong ◽  
Hanxue Hou ◽  
Xiansheng Zhang

Phenolic acid profiles and antioxidant activities of outer bran, coarse bran, and shorts from blue, black, and purple wheat were analyzed. Phenolic acids were mainly in the bound form in pigmented wheat bran fractions. Phenolic acid content decreased in the order of outer bran, coarse bran, and shorts for the three pigmented wheat varieties. HPLC analysis of phenolic extracts demonstrated that the bound form of phenolic acids contained more ferulic, isoferulic, and p-coumaric acids compared to their free counterparts. Among the three pigmented wheat varieties, the bran fractions from blue wheat contained higher bound phenolic acids than the other two pigmented wheat bran fractions, except for purple coarse bran. The blue wheat outer bran had the highest total bound phenolic acid of 3458.71 μg/g while the purple wheat shorts had the lowest of 1730.71 μg/g. The contribution of bound phenolic acids to the total phenolic content and antioxidant activity was significantly higher than that of free phenolic acids. Blue wheat bran fractions had the highest radical scavenging activity against DPPH∙ while those of purple wheat gained the highest ABTS∙+ scavenging activity. High correlations were observed between TPC and radical scavenging capacities for DPPH and ABTS (R2>0.85, P<0.05).


Sign in / Sign up

Export Citation Format

Share Document