scholarly journals Optimization of Plant Production by Seed Treatment in Two Wild Subspecies of Narcissus pseudonarcissus Rich in Alkaloids

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4439 ◽  
Author(s):  
Raquel Herranz ◽  
Miguel A. Copete ◽  
José M. Herranz ◽  
Elena Copete ◽  
Pablo Ferrandis

The daffodil Narcissus pseudonarcissus L. contains alkaloids of pharmaceutical interest. Wild daffodil populations have diverse genetic backgrounds and various genetic traits of possible importance. Developing protocols for plant production from seeds may ensure the availability of a large reservoir of individuals as well as being important for species with bulbs that are difficult to acquire. The closely related Narcissus pseudonarcissus subsp. munozii-garmendiae and subsp. nevadensis were investigated in this study because the alkaloids isolated from both are of high pharmacological interest. At the dispersal time, the seeds of both were dormant with underdeveloped embryos, i.e., morphophysiological dormancy (MPD). Experiments were conducted outdoors and under controlled laboratory conditions. Embryo growth and the percentages of radicle and seedling emergence were calculated under different temperature–light stratifications. In N. munozii-garmendiae, embryo growth occurred during warm stratification (28/14 °C or 25/10 °C) and the radicle then emerged when the temperature decreased, but the shoot was dormant. In N. nevadensis, the seeds germinated when cold stratified (5 °C) and then incubated at cool temperatures. Thus, N. munozii-garmendiae and N. nevadensis exhibit different levels of MPD, i.e., deep simple epicotyl and intermediate complex, respectively. Plant production protocols from seeds were established for both taxa in this study.

2020 ◽  
Author(s):  
Miguel A Copete ◽  
José M Herranz ◽  
Raquel Herranz ◽  
Elena Copete ◽  
Pablo Ferrandis

Abstract Aims In species with morphophysiological seed dormancy (MPD), little is known about the effects of desiccation of imbibed seeds on embryo growth and germination. We studied seed responses to dehydration in nine species with different levels of MPD. Methods For each species, a control test was conducted by keeping seeds permanently hydrated and exposed to the optimal stratification-incubation sequence to promote embryo growth. Simultaneously, tests were run in which seed stratification was interrupted for 1 month by desiccation at room temperature. Important Findings In Clematis vitalba and Ribes alpinum, with nondeep simple MPD, desiccation affected neither embryo growth nor seed viability, but the desiccation led to a decrease of germinative ability in R. alpinum by 16%. The seeds of Narcissus pseudonarcissus subsp. munozii-garmendiae, with deep simple epicotyl MPD, tolerated desiccation in different embryo growth stages, but their germinative ability decreased slightly. The response of species with complex levels of MPD to desiccation was more variable: Delphinium fissum subsp. sordidum, with intermediate complex MPD, and Anthriscus sylvestris and Meum athamanticum, both with deep complex MPD, tolerated desiccation. In contrast, Ribes uva-crispa with nondeep complex MPD, Lonicera pyrenaica with intermediate complex MPD, and Chaerophyllum aureum with deep complex MPD, had diminished germination ability by desiccation. Although seeds of the species with simple levels of MPD tolerated desiccation, those of some species with complex levels were also highly tolerant. Thus, desiccation did not induce secondary dormancy in late embryo growth stages. The desiccation tolerance of imbibed seeds of most of the nine species may show their adaptability to climate change in the Mediterranean region.


2020 ◽  
Vol 29 (2) ◽  
pp. e017
Author(s):  
Raquel Herranz-Ferrer ◽  
Miguel Ángel Copete-Carreño ◽  
José María Herranz-Sanz ◽  
Elena Copete-Carreño ◽  
Pablo Ferrandis-Gotor

Aim of the study: To study the germination ecology of two species of the genus Ribes to reveal their levels of morphophysiological dormancy (MPD) and to facilitate the production of plants from seeds, a key tool for population reinforcement.Area of study: Experiments were carried out both outdoors and in the laboratory in Albacete (Spain) with seeds from the Meridional Iberian System mountain range.Material and methods: Seeds from one population of Ribes alpinum and from other of Ribes uva-crispa were collected during several years. Embryo length, radicle and seedling emergence, and effects on germination of stratification and GA3 were analysed to determine the level of MPD.Main results: In R. alpinum, embryo length in fresh seeds was 0.49 mm, needing to grow to 1.30 mm to germinate. Warm stratification (25/10ºC) promoted embryo length enlargement to 0.97 mm. Afterwards, seeds germinated within a wide temperature range. Embryo growth and seedling emergence occur late summer-early autumn. In R. uva-crispa, embryo length in fresh seeds was 0.52 mm, being 2.10 mm the minimal size to germinate. Embryos exposed to a moderately warm stratification (20/7ºC + 15/4ºC) followed by cold (5ºC) grew to 2.30 mm. Then, seeds germinated ≥ 80% when incubated at temperatures ≥ 15/4ºC. Embryos grew in autumn/early winter, and seedlings emerged late winter-early spring.Research highlights: These results showed that R. alpinum seeds have a nondeep simple MPD while R. uva-crispa seeds have a nondeep complex MPD. Moreover, the different germinative models found for each species help explain their installation in distinct habitats.Keywords: Ribes; seed dormancy break; radicle emergence; seedling emergence; nondeep simple and nondeep complex MPD.Abbreviations used: Morphophysiological dormancy (MPD), morphological dormancy (MD), Gibberellic acid (GA3), months (m).


Botany ◽  
2021 ◽  
Author(s):  
Lanlan He ◽  
Ganesh K. Jaganathan ◽  
Baolin Liu

The timing of germination is a crucial event in a plant’s life cycle. Seed dormancy and germination mechanisms are important factors regulating seedling emergence. Since detailed experimental evidence for germination pattern of Phoenix canariensis colonizing sub-tropical climate is scarce, we investigated seed dormancy and germination ecology of P. canariensis. We found that the embryo is underdeveloped at the time of dispersal and doubles in size before the cotyledonary petiole (CP) protrudes through the operculum. The primary root and plumule emerge from the elongated CP outside the seed. In light/dark at 30/25°C, the CP emerged from 8% of the diaspores within 30 days and from 76% within 14 weeks. Thus, 8% of the diaspores have MD and the others MPD. Removal of the pericarp and operculum resulted in 100% germination within 5 days in light/dark at 30/25°C. Cold and warm stratification as well as treatment with GA3 significantly increased the germination speed, but the final germination percentage was not significantly increased. Seed germination was synchronized in early summer when seed dormancy was released by cold stratification in the soil over winter. A remote-tubular germination type and intricate root system provide an ecological advantage to the seedling establishment.


2019 ◽  
Vol 41 (1) ◽  
pp. 33
Author(s):  
Mounir Louhaichi ◽  
Sawsan Hassan ◽  
Ali Mekki Missaoui ◽  
Serkan Ates ◽  
Steven L. Petersen ◽  
...  

Direct seeding techniques often result in unsatisfactory outcomes in rangeland rehabilitation, primarily because of low seedling emergence and poor establishment. Seed processing techniques aimed at improving seedling emergence have gained interest by pasture managers. The purpose of this study was to investigate the combined effects of bracteole removal and seeding rate on seedling emergence in seven halophytic species: Atriplex halimus, A. canescens, A. leucoclada, A. nummularia, A. lentiformis, Salsola vermiculata and Haloxylon aphyllum under semi-arid conditions in Tel Hadya (Syria). Each of these species was evaluated for seedling emergence under two seed treatments (bracteoles removed and non-removed bracteoles) with three seeding rates (10, 30 and 60 seeds per pot), in a completely randomised block design. The results showed a positive effect of seed treatment on seedling emergence for all studied species. The native A. halimus had the highest emergence percentages whereas the introduced A. mummularia, had the lowest. However, there were no significant effects of seeding rates on seedling emergence. These results showed that bracteole removal could improve germination and seedling emergence, and potentially increase the rate of establishment of the species studied. Therefore, when implementing rangeland rehabilitation projects, bracteole removal needs to be considered. The native S. vermiculata should be recommended for direct seeding in the West Asia and North Africa region given its high seedling emergence, known high palatability, nutritive value, and high auto-regeneration performance.


2018 ◽  
Vol 2 (1) ◽  
pp. 43 ◽  
Author(s):  
Sheila Rahma Yunita ◽  
Sutarno Sutarno ◽  
Eny Fuskhah

The objective of this research was to study the hardiness of several soybean varieties to different levels of salinity water and to find out  the effect of salinity on soybean growth and production. This research was conducted in Greenhouse and Laboratory of Ecology and Plant Production at Faculty of Animal and Agricultural Sciences, Diponegoro University from February to May 2017. The research was arranged using completely randomized factorial design with the first factor was soybean varieties (Dering 1, Demas 2, and Devon 3) and the second factor was water salinity level (0 dS/m, 3 dS/m, 6 dS/m and  9 dS/m). The result showed that the treatment of 3 dS/m water salinity level did not affect at plant height and number of leaves until 4th week. However salinity of 6 and 9 dS/m decreased the height and number of leaves from all varieties. Salinity level of 3, 6 and 9 dS/m decreased the number of pod, weight of pod and 100 seeds weight from all verieties. Dering 1 yielded 100 seeds weight heavier than Demas 1 and Devon 1.Keywords : growth, production, salinity, soybean.


2009 ◽  
Vol 19 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Filip Vandelook ◽  
Nele Bolle ◽  
Jozef A. Van Assche

AbstractA low-temperature requirement for dormancy break has been observed frequently in temperate-climate Apiaceae species, resulting in spring emergence of seedlings. A series of experiments was performed to identify dormancy-breaking requirements of Aegopodium podagraria, a nitrophilous perennial growing mainly in mildly shaded places. In natural conditions, the embryos in seeds of A. podagraria grow in early winter. Seedlings were first observed in early spring and seedling emergence peaked in March and April. Experiments using temperature-controlled incubators revealed that embryos in seeds of A. podagraria grow only at low temperatures (5°C), irrespective of a pretreatment at higher temperatures. Seeds did not germinate immediately after embryo growth was completed, instead an additional cold stratification period was required to break dormancy completely. Once dormancy was broken, seeds germinated at a range of temperatures. Addition of gibberellic acid (GA3) had a positive effect on embryo growth in seeds incubated at 10°C and at 23°C, but it did not promote germination. Since seeds of A. podagraria have a low-temperature requirement for embryo growth and require an additional chilling period after completion of embryo growth, they exhibit characteristics of deep complex morphophysiological dormancy.


2019 ◽  
Vol 34 (3) ◽  
pp. 85-94 ◽  
Author(s):  
Sanaz Zardari ◽  
Farshid Ghaderi‐Far ◽  
Hamid R. Sadeghipour ◽  
Ebrahim Zeinali ◽  
Elias Soltani ◽  
...  

2014 ◽  
Vol 36 (4) ◽  
pp. 392-398 ◽  
Author(s):  
Julia Abati ◽  
Claudemir Zucareli ◽  
José Salvador Simoneti Foloni ◽  
Fernando Augusto Henning ◽  
Cristian Rafael Brzezinski ◽  
...  

Seed treatment with insecticides and fungicides has become an important practice for ensuring initial plant stand in establishing crops. In this context, the aim of this study was to evaluate the influence of chemical seed treatment with insecticides and fungicides on the physiological quality and health of the seeds of wheat cultivars. Seeds of the wheat cultivars BRS Pardela and BRS Gaivota were used, subjected to the following chemical treatments: 1- control, 2- carboxin + thiram + imidacloprid + thiodicarb, 3- carbendazim + thiram + imidacloprid + thiodicarb, 4- fipronil + thiophanate-methyl + pyraclostrobin, 5- triadimenol + imidacloprid + thiodicarb, 6- fipronil, and 7- imidacloprid + thiodicarb. Physiological quality was evaluated by tests of germination, accelerated aging, the length and dry weight of shoots and roots, and seedling emergence in the field. Seed health quality was evaluated by the blotter test method. The seeds of the wheat cultivars tested respond differently to the chemical treatments in regard to effects on germination and vigor. The treatment with triadimenol + imidacloprid + thiodicarb is harmful to seedling development. For the BRS Gaivota cultivar, the seed treatment with carboxin + thiram + imidacloprid + thiodicarb; and carbendazim + thiram + imidacloprid + thiodicarb improved seedling establishment in the field compared to the control.


2001 ◽  
Vol 81 (3) ◽  
pp. 509-517 ◽  
Author(s):  
S. F. Hwang ◽  
B. D. Gossen ◽  
K. F. Chang ◽  
G. D. Turnbull ◽  
R. J. Howard

When cool, wet conditions persist after planting, Pythium spp. can be an important constraint to stand establishment in field pea. Laboratory studies and field trials were conducted over 3 yr to assess the impact and evaluate the interactions of Pythium spp., metalaxyl seed treatment and damage to seed on seedling establishment, root rot severity and seed yield of field pea. Seedling emergence, seedling size, and seed yield were reduced by inoculation with Pythium spp. and by mechanical damage to the seed. Fungicide seed treatment reduced the impact of seed damage, but did not always restore seedling emergence and seed yield to the same level as from undamaged seed. Undamaged seed treated with metalaxyl was not affected by inoculation with Pythium spp. Differences among cultivars, although often significant, were small relative to the effect of seed injury. Laboratory studies showed a negative linear relationship between inoculum concentration and emergence from untreated seed. They also showed that Pythium spp. had a similar impact on seedling emergence in cool (20/10°C day/night) and cold (12/6°C) soils. This study showed that planting fungicide-treated, high-quality field seed was an effective means of maximizing emergence and stand establishment for commercial field pea production. Key words: Pisum sativum, seed vigour, metalaxyl, Pythium, seed damage


Sign in / Sign up

Export Citation Format

Share Document