scholarly journals Exploitation of Ultrasound Technique for Enhancement of Microbial Metabolites Production

Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5473
Author(s):  
Asma Behzadnia ◽  
Marzieh Moosavi-Nasab ◽  
Shikha Ojha ◽  
Brijesh K. Tiwari

Microbial metabolites have significant impacts on our lives from providing valuable compounds for nutrition to agriculture and healthcare. Ever-growing demand for these natural compounds has led to the need for smart and efficient production techniques. Ultrasound is a multi-applicable technology widely exploited in a range of industries such as chemical, medical, biotechnological, pharmaceutical, and food processes. Depending on the type of ultrasound employed, it can be used to either monitor or drive fermentation processes. Ultrasonication can improve bioproduct productivity via intensifying the performance of living organisms. Controlled ultrasonication can influence the metabolites’ biosynthesis efficiency and growth rates by improvement of cell permeability as well as mass transfer and nutrient uptake rates through cell membranes. This review contains a summarized description about suitable microbial metabolites and the applications of ultrasound technique for enhancement of the production of these metabolites as well as the associated downstream processing.

2020 ◽  
Vol 9 (1) ◽  
pp. 36
Author(s):  
Katerina V. Sazanova (nee Barinova) ◽  
Marina S. Zelenskaya ◽  
Vera V. Manurtdinova ◽  
Alina R. Izatulina ◽  
Aleksei V. Rusakov ◽  
...  

The pattern of elements accumulation in biodeposits formed by living organisms and extracellular products of their metabolism (biofouling, primary soils) on different bedrocks (of the monuments of Historical necropoleis in Saint Petersburg) were studied by a complex of biological and mineralogical methods (optical microscopy, SEM, EDX, XRD, ICP MS, XRFS). The content of 46 elements in biodeposits with various communities of microorganisms is determined. The model recreating the picture of the input and selective accumulation of elements in biodeposits on the stone surface in outdoor conditions is assumed. It is shown that the main contribution to the elemental composition of biodeposits is made by the environment and the composition of the microbial community. The contribution of leaching under the action of microbial metabolites of mineral grains, entering biodeposits from the environment, is significantly greater than that of the underlying rock.


2019 ◽  
Author(s):  
◽  
Ghaneshree Moonsamy

The abalone industry of South Africa is under severe pressure due to illegal harvesting and poaching of this seafood delicacy. These abalones are harvested excessively; as a result, these animals do not have a chance to replace themselves in their habitats, ensuing in a drastic decrease in natural stocks of abalone. Abalone, has an extremely slow growth rate, and takes approximately four years to reach a size that is market acceptable, therefore, it was imperative to investigate methods to boost the overall growth rate and immunity of the animal. The University of Cape Town (UCT) began research, which resulted in the isolation of two microorganisms, a yeast isolate Debaryomyces hansenii and a bacterial isolate Vibrio midae, from the gut of the abalone and characterised them for their probiotic abilities. This work resulted in an internationally competitive concept technology that was patented. The next stage of research was to develop a suitable bioprocess to enable commercial production. Numerous steps were taken to develop an efficient production process for V. midae, one of the isolates found by UCT. The initial stages of research resulted in the development of a stable and validated cell bank which allowed the development of a robust inoculum stage. This was followed by optimization of temperature and pH which resulted in improved probiotic production at a temperature of 30oC and a pH of 6.5. Once these critical growth parameters were established further media optimization studies were performed. The two key nutrient supplements investigated were corn steep liquor (CSL) and High Test Molasses (HTM) due to their suitability, availability and affordability. The optimization of CSL (6.4 g.l-1) and HTM (24 g.l-1) concentrations in the growth medium resulted in a 180% increase in cell concentration, a 5716-fold increase in cell productivity and a 97.2% decrease in the material cost of production when compared to the base case technology. Furthermore, a stable market ready liquid probiotic product, containing viable but not culturable (VBNC) state of Vibrio midae cells, was developed during the downstream processing aspect of the study. Finally, the validation of this production technology at full manufacturing scale was demonstrated which further enhances the attractiveness and commercial feasibility of this probiotic production process.


Author(s):  
Michael J. Ziegler ◽  
Klaus Yserentant ◽  
Valentin Dunsing ◽  
Volker Middel ◽  
Antoni J. Gralak ◽  
...  

AbstractDirect control of protein interactions by chemically induced protein proximity holds great potential for both cell and synthetic biology as well as therapeutic applications. Low toxicity, orthogonality and excellent cell permeability are important criteria for chemical inducers of proximity (CIPs), in particular for in vivo applications. Here, we present the use of the agrochemical mandipropamid (Mandi) as a highly efficient CIP in cell culture systems and living organisms. Mandi specifically induces complex formation between a sixfold mutant of the plant hormone receptor pyrabactin resistance 1 (PYR1) and abscisic acid insensitive (ABI). It is orthogonal to other plant hormone-based CIPs and rapamycin-based CIP systems. We demonstrate the applicability of the Mandi system for rapid and efficient protein translocation in mammalian cells and zebrafish embryos, protein network shuttling and manipulation of endogenous proteins.


Author(s):  
Yuta Tsunematsu

AbstractNatural products, which can be isolated from living organisms worldwide, have played a pivotal role in drug discovery since ancient times. However, it has become more challenging to identify a structurally novel molecule with promising biological activity for pharmaceutical development, mainly due to the limited methodologies for their acquisition. In this review, we summarize our recent studies that activate the biosynthetic potential of filamentous fungi by genetic engineering to harness the metabolic flow for the efficient production of unprecedented natural products. The recent revolution in genome sequencing technology enables the accumulation of vast amounts of information on biosynthetic genes, the blueprint of the molecular construction. Utilizing the established heterologous expression system, activation of the pathway-specific transcription factor coupled with a knockout strategy, and manipulating the global regulatory gene, the biosynthetic genes were exploited to activate biosynthetic pathways and decipher the encoded enzyme functions. We show that this methodology was beneficial for acquiring fungal treasures for drug discovery. These studies also enabled the investigation of the molecular function of natural products in fungal development.


Author(s):  
Michael J. Ziegler ◽  
Klaus Yserentant ◽  
Volker Middel ◽  
Valentin Dunsing ◽  
Antoni J. Gralak ◽  
...  

ABSTRACTDirect control of protein interaction by chemically induced protein proximity (CIPP) holds great potential for cell- and synthetic biology as well as therapeutic applications. However, toxicity, low cell-permeability and lack of orthogonality currently limit the use of available chemical inducers of proximity (CIP). We present ‘Mandi’, a novel CIP and demonstrate its applicability in cell culture systems as well as living organisms for protein translocation, protein network shuttling and manipulation of endogenous proteins.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1327
Author(s):  
Merlin Raud ◽  
Kaja Orupõld ◽  
Lisandra Rocha-Meneses ◽  
Vahur Rooni ◽  
Olev Träss ◽  
...  

Results from an investigation of the mechanical size reduction with the Szego Mill™ as a pretreatment method for lignocellulosic biomass are presented. Pretreatment is a highly expensive and energy-consuming step in lignocellulosic biomass processing. Therefore, it is vital to study and optimize different pretreatment methods to find a most efficient production process. The biomass was milled with the Szego Mill™ using three different approaches: dry milling, wet milling and for the first time nitrogen assisted wet milling was tested. Bioethanol and biogas production were studied, but also fibre analysis and SEM (scanning electron microscope) analysis were carried out to characterize the effect of different milling approaches. In addition, two different process flows were used to evaluate the efficiency of downstream processing steps. The results show that pretreatment of barely straw with the Szego Mill™ enabled obtaining glucose concentrations of up to 7 g L−1 in the hydrolysis mixture, which yields at hydrolysis efficiency of 18%. The final ethanol concentrations from 3.4 to 6.7 g L−1 were obtained. The lowest glucose and ethanol concentrations were measured when the biomass was dry milled, the highest when nitrogen assisted wet milling was used. Milling also resulted in an 6–11% of increase in methane production rate during anaerobic digestion of straw.


2016 ◽  
Vol 19 (4) ◽  
pp. 64-75
Author(s):  
Phuong Dong Tra ◽  
Phuong Thi Bach Vu ◽  
Phuong Ngo Diem Quach

Balloon flower (Platycodon grandiflorum (Jacq.) A. DC.), the only species in Platycodon genus (Campanulaceae), is mainly distributed in East Asia. The rhizomes of P. grandiflorum, a traditional herbal medicine, have been widely used for the treatment of cough, sore throat, asthma, tuberculosis and other diseases. Recently, pharmacological researches identified important biological activities compounds in the rhizomes. Thus, to study and extract valuable compounds, a hairy root induced technique was achieved on P. grandiflorum for stable material with fast growth rates (in hormone-free media) and metabolites production. To achieve this, the “natural genetic tool” Agrobacterium rhizogenes, which can transfer DNA segments into genome of plant, was exploited. The results suggested two (A. rhizogenes ATCC 15834 and C34) of four A. rhizogenes strains could induce hairy roots. RolB and rolC genes, which are responsible for the induction of hairy roots, were inserted into the genome of hairy roots. Leaves had the highest infection frequency of hairy root induction 100 %. The optimization of protocol, including time of immersion and co-culture, had the best results with 10 and 15 mins (10 mins for A. rhizogenes ATCC 15834 and 15 mins for A. rhizogenes C34) and 72 hours, respectively. In the future, this protocol, which was described in this paper, should be useful for studying and isolating valuable compounds from P. grandiflorum hairy root cultures.


Author(s):  
Harald Voelkl ◽  
Andreas Kießkalt ◽  
Sandro Wartzack

AbstractEven though providing excellent specific stiffness and strength properties, high specific energy absorption and a great degree of design freedom, fibre-reinforced plastics still have to make their way into higher volume applications. Addressing the manufacturing challenges, particularly efficient production techniques are Automated Tape Laying (ATL) and Automated Fiber Placement (AFP), as pointed out by various studies and use cases. However, current Computer Aided Engineering approaches for optimised laminate design still lack the capability to produce results suitable for ATL/AFP. A new method for deriving tape courses from any finite element laminate optimisation result is presented and applied to a virtual demonstrator. An outlook is given on further necessities of extending current laminate optimisation approaches.


Sign in / Sign up

Export Citation Format

Share Document