scholarly journals A Review: Halogenated Compounds from Marine Fungi

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 458
Author(s):  
Cong Wang ◽  
Huanyun Lu ◽  
Jianzhou Lan ◽  
KH Ahammad Zaman ◽  
Shugeng Cao

Marine fungi produce many halogenated metabolites with a variety of structures, from acyclic entities with a simple linear chain to multifaceted polycyclic molecules. Over the past few decades, their pharmaceutical and medical application have been explored and still the door is kept open due to the need of new drugs from relatively underexplored sources. Biological properties of halogenated compounds such as anticancer, antiviral, antibacterial, anti-inflammatory, antifungal, antifouling, and insecticidal activity have been investigated. This review describes the chemical structures and biological activities of 217 halogenated compounds derived mainly from Penicillium and Aspergillus marine fungal strains reported from 1994 to 2019.

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2754
Author(s):  
Cong Wang ◽  
Weisheng Du ◽  
Huanyun Lu ◽  
Jianzhou Lan ◽  
Kailin Liang ◽  
...  

Marine actinomycetes, Streptomyces species, produce a variety of halogenated compounds with diverse structures and a range of biological activities owing to their unique metabolic pathways. These halogenated compounds could be classified as polyketides, alkaloids (nitrogen-containing compounds) and terpenoids. Halogenated compounds from marine actinomycetes possess important biological properties such as antibacterial and anticancer activities. This review reports the sources, chemical structures and biological activities of 127 new halogenated compounds originated mainly from Streptomyces reported from 1992 to 2020.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 330
Author(s):  
Timofey V. Malyarenko ◽  
Alla A. Kicha ◽  
Valentin A. Stonik ◽  
Natalia V. Ivanchina

Sphingolipids are complex lipids widespread in nature as structural components of biomembranes. Commonly, the sphingolipids of marine organisms differ from those of terrestrial animals and plants. The gangliosides are the most complex sphingolipids characteristic of vertebrates that have been found in only the Echinodermata (echinoderms) phylum of invertebrates. Sphingolipids of the representatives of the Asteroidea and Holothuroidea classes are the most studied among all echinoderms. In this review, we have summarized the data on sphingolipids of these two classes of marine invertebrates over the past two decades. Recently established structures, properties, and peculiarities of biogenesis of ceramides, cerebrosides, and gangliosides from starfishes and holothurians are discussed. The purpose of this review is to provide the most complete information on the chemical structures, structural features, and biological activities of sphingolipids of the Asteroidea and Holothuroidea classes.


Author(s):  
Hiroyuki Yamazaki

AbstractNature is a prolific source of organic products with diverse scaffolds and biological activities. The process of natural product discovery has gradually become more challenging, and advances in novel strategic approaches are essential to evolve natural product chemistry. Our focus has been on surveying untouched marine resources and fermentation to enhance microbial productive performance. The first topic is the screening of marine natural products isolated from Indonesian marine organisms for new types of bioactive compounds, such as antineoplastics, antimycobacterium substances, and inhibitors of protein tyrosine phosphatase 1B, sterol O-acyl-transferase, and bone morphogenetic protein-induced osteoblastic differentiation. The unique biological properties of marine organohalides are discussed herein and attempts to efficiently produce fungal halogenated metabolites are documented. This review presents an overview of our recent work accomplishments based on the MONOTORI study. Graphic abstract


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 965
Author(s):  
Renan Campos e Silva ◽  
Jamile S. da Costa ◽  
Raphael O. de Figueiredo ◽  
William N. Setzer ◽  
Joyce Kelly R. da Silva ◽  
...  

Psidium (Myrtaceae) comprises approximately 266 species, distributed in tropical and subtropical regions of the world. Psidium taxa have great ecological, economic, and medicinal relevance due to their essential oils’ chemical diversity and biological potential. This review reports 18 Psidium species growing around the world and the chemical and biological properties of their essential oils. Chemically, 110 oil records are reported with significant variability of volatile constituents, according to their seasonality and collection sites. Monoterpenes and sesquiterpenes with acyclic (C10 and C15), p-menthane, pinane, bisabolane, germacrane, caryophyllane, cadinane, and aromadendrane skeleton-types, were the primary constituents. The essential oils showed various biological activities, including antioxidant, antifungal, antibacterial, phytotoxic, larvicidal, anti-inflammatory, and cytotoxic properties. This review contributes to the Psidium species rational and economic exploration as natural sources to produce new drugs.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 610
Author(s):  
Junjie Yan ◽  
Weiwei Liu ◽  
Jiatong Cai ◽  
Yiming Wang ◽  
Dahong Li ◽  
...  

Phenazines are a large group of nitrogen-containing heterocycles, providing diverse chemical structures and various biological activities. Natural phenazines are mainly isolated from marine and terrestrial microorganisms. So far, more than 100 different natural compounds and over 6000 synthetic derivatives have been found and investigated. Many phenazines show great pharmacological activity in various fields, such as antimicrobial, antiparasitic, neuroprotective, insecticidal, anti-inflammatory and anticancer activity. Researchers continued to investigate these compounds and hope to develop them as medicines. Cimmino et al. published a significant review about anticancer activity of phenazines, containing articles from 2000 to 2011. Here, we mainly summarize articles from 2012 to 2021. According to sources of compounds, phenazines were categorized into natural phenazines and synthetic phenazine derivatives in this review. Their pharmacological activities, mechanisms of action, biosynthetic pathways and synthetic strategies were summarized. These may provide guidance for the investigation on phenazines in the future.


Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 321 ◽  
Author(s):  
Minghua Jiang ◽  
Zhenger Wu ◽  
Heng Guo ◽  
Lan Liu ◽  
Senhua Chen

Marine-derived fungi are a significant source of pharmacologically active metabolites with interesting structural properties, especially terpenoids with biological and chemical diversity. In the past five years, there has been a tremendous increase in the rate of new terpenoids from marine-derived fungi being discovered. In this updated review, we examine the chemical structures and bioactive properties of new terpenes from marine-derived fungi, and the biodiversity of these fungi from 2015 to 2019. A total of 140 research papers describing 471 new terpenoids of six groups (monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, triterpenes, and meroterpenes) from 133 marine fungal strains belonging to 34 genera were included. Among them, sesquiterpenes, meroterpenes, and diterpenes comprise the largest proportions of terpenes, and the fungi genera of Penicillium, Aspergillus, and Trichoderma are the dominant producers of terpenoids. The majority of the marine-derived fungi are isolated from live marine matter: marine animals and aquatic plants (including mangrove plants and algae). Moreover, many terpenoids display various bioactivities, including cytotoxicity, antibacterial activity, lethal toxicity, anti-inflammatory activity, enzyme inhibitor activity, etc. In our opinion, the chemical diversity and biological activities of these novel terpenoids will provide medical and chemical researchers with a plenty variety of promising lead compounds for the development of marine drugs.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2891 ◽  
Author(s):  
Josana de Castro Peixoto ◽  
Bruno Junior Neves ◽  
Flávia Gonçalves Vasconcelos ◽  
Hamilton Barbosa Napolitano ◽  
Maria Gonçalves da Silva Barbalho ◽  
...  

Flavonoids are highly bioactive compounds with very low toxicity, which makes them attractive starting points in drug discovery. This study aims to provide information on plant species containing flavonoids, which are found in the Brazilian Cerrado. First, we present the characterization and plant diversity with emphasis on the families of flavonoid-producing plants, and then we describe the phenylpropanoid pathway which represents the flavonoids’ main route biosynthesis—generally conserved in all species. Chemical structures and biological activities of flavonoids isolated from the Cerrado’s plant species are also described based on examples from the relevant literature studies. Finally, research on the biodiversity of the Cerrado biome should be encouraged, due to the discovery of new sources of flavonoids which can provide several benefits to human health and the possibility of developing new drugs by the pharmaceutical industry.


2015 ◽  
Vol 2015 ◽  
pp. 1-29 ◽  
Author(s):  
Ricardo Silva-Carvalho ◽  
Fátima Baltazar ◽  
Cristina Almeida-Aguiar

The health industry has always used natural products as a rich, promising, and alternative source of drugs that are used in the health system. Propolis, a natural resinous product known for centuries, is a complex product obtained by honey bees from substances collected from parts of different plants, buds, and exudates in different geographic areas. Propolis has been attracting scientific attention since it has many biological and pharmacological properties, which are related to its chemical composition. Severalin vitroandin vivostudies have been performed to characterize and understand the diverse bioactivities of propolis and its isolated compounds, as well as to evaluate and validate its potential. Yet, there is a lack of information concerning clinical effectiveness. The goal of this review is to discuss the potential of propolis for the development of new drugs by presenting published data concerning the chemical composition and the biological properties of this natural compound from different geographic origins.


2021 ◽  
Author(s):  
Jiao Li ◽  
Chun-Lin Zhuang

The indole scaffold is one of the most important heterocyclic ring systems for pharmaceutical development, and serves as an active moiety in several clinical drugs. Fungi derived from marine origin are more liable to produce novel indole-containing natural products due to their extreme living environments. The indole alkaloids from marine fungi have drawn considerable attention for their unique chemical structures and significant biological activities. This review attempts to provide a summary of the structural diversity of marine fungal indole alkaloids including prenylated indoles, diketopiperazine indoles, bisindoles or trisindoles, quinazoline-containing indoles, indole-diterpenoids, and other indoles, as well as their known biological activities, mainly focusing on cytotoxic, kinase inhibitory, antiinflammatory, antimicrobial, anti-insecticidal, and brine shrimp lethal effects. A total of 306 indole alkaloids from marine fungi have been summarized, covering the references published from 1995 to early 2021, expecting to be beneficial for drug discovery in the future.


2021 ◽  
Vol 14 (12) ◽  
pp. 1274
Author(s):  
Jinyun Chen ◽  
Sunyan Lv ◽  
Jia Liu ◽  
Yanlei Yu ◽  
Hong Wang ◽  
...  

1,3-Oxazole chemicals are a unique class of five-membered monocyclic heteroarenes, containing a nitrogen atom and an oxygen. These alkaloids have attracted extensive attention from medicinal chemists and pharmacologists owing to their diverse arrays of chemical structures and biological activities, and a series of 1,3-oxazole derivatives has been developed into therapeutic agents (e.g., almoxatone, befloxatone, cabotegravir, delpazolid, fenpipalone, haloxazolam, inavolisib). A growing amount of evidence indicates that marine organisms are one of important sources of 1,3-oxazole-containing alkaloids. To improve our knowledge regarding these marine-derived substances, as many as 285 compounds are summarized in this review, which, for the first time, highlights their sources, structural features and biological properties, as well as their biosynthesis and chemical synthesis. Perspective for the future discovery of new 1,3-oxazole compounds from marine organisms is also provided.


Sign in / Sign up

Export Citation Format

Share Document