scholarly journals A Review: Halogenated Compounds from Marine Actinomycetes

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2754
Author(s):  
Cong Wang ◽  
Weisheng Du ◽  
Huanyun Lu ◽  
Jianzhou Lan ◽  
Kailin Liang ◽  
...  

Marine actinomycetes, Streptomyces species, produce a variety of halogenated compounds with diverse structures and a range of biological activities owing to their unique metabolic pathways. These halogenated compounds could be classified as polyketides, alkaloids (nitrogen-containing compounds) and terpenoids. Halogenated compounds from marine actinomycetes possess important biological properties such as antibacterial and anticancer activities. This review reports the sources, chemical structures and biological activities of 127 new halogenated compounds originated mainly from Streptomyces reported from 1992 to 2020.

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 458
Author(s):  
Cong Wang ◽  
Huanyun Lu ◽  
Jianzhou Lan ◽  
KH Ahammad Zaman ◽  
Shugeng Cao

Marine fungi produce many halogenated metabolites with a variety of structures, from acyclic entities with a simple linear chain to multifaceted polycyclic molecules. Over the past few decades, their pharmaceutical and medical application have been explored and still the door is kept open due to the need of new drugs from relatively underexplored sources. Biological properties of halogenated compounds such as anticancer, antiviral, antibacterial, anti-inflammatory, antifungal, antifouling, and insecticidal activity have been investigated. This review describes the chemical structures and biological activities of 217 halogenated compounds derived mainly from Penicillium and Aspergillus marine fungal strains reported from 1994 to 2019.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 965
Author(s):  
Renan Campos e Silva ◽  
Jamile S. da Costa ◽  
Raphael O. de Figueiredo ◽  
William N. Setzer ◽  
Joyce Kelly R. da Silva ◽  
...  

Psidium (Myrtaceae) comprises approximately 266 species, distributed in tropical and subtropical regions of the world. Psidium taxa have great ecological, economic, and medicinal relevance due to their essential oils’ chemical diversity and biological potential. This review reports 18 Psidium species growing around the world and the chemical and biological properties of their essential oils. Chemically, 110 oil records are reported with significant variability of volatile constituents, according to their seasonality and collection sites. Monoterpenes and sesquiterpenes with acyclic (C10 and C15), p-menthane, pinane, bisabolane, germacrane, caryophyllane, cadinane, and aromadendrane skeleton-types, were the primary constituents. The essential oils showed various biological activities, including antioxidant, antifungal, antibacterial, phytotoxic, larvicidal, anti-inflammatory, and cytotoxic properties. This review contributes to the Psidium species rational and economic exploration as natural sources to produce new drugs.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Meiting Wu ◽  
Lin Ni ◽  
Haixiao Lu ◽  
Huiyou Xu ◽  
Shuangquan Zou ◽  
...  

Cinnamomum is a genus of the family Lauraceae, which has been recognized worldwide as an important genus due to its beneficial uses. A great deal of research on its phytochemistry and pharmacological effects has been conducted. It is noteworthy that terpenoids are the characteristic of Cinnamomum due to the peculiar structures and significant biological effects. For a more in-depth study and the better use of Cinnamomum plants in the future, the chemical structures and biological effects of terpenoids obtained from Cinnamomum were summarized in the present study. To date, a total of 181 terpenoids with various skeletons have been isolated from Cinnamomum. These compounds have been demonstrated to play an important role in immunomodulatory, anti-inflammatory, antimicrobial, antioxidant, and anticancer activities. However, studies on the bioactive components from Cinnamomum plants have only focused on a dozen species. Hence, further studies on the potential pharmacological effects need to be conducted in the future.


2012 ◽  
Vol 7 (7) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Yanyan Zhang ◽  
Ting Han ◽  
Qianliang Ming ◽  
Lingshang Wu ◽  
Khalid Rahman ◽  
...  

In recent years, a number of alkaloids have been discovered from endophytic fungi in plants, which exhibited excellent biological properties such as antimicrobial, insecticidal, cytotoxic, and anticancer activities. This review mainly deals with the research progress on endophytic fungi for producing bioactive alkaloids such as quinoline and isoquinoline, amines and amides, indole derivatives, pyridines, and quinazolines. The biological activities and action mechanisms of these alkaloids from endophytic fungi are also introduced. Furthermore, the relationships between alkaloid-producing endophytes and their host plants, as well as their potential applications in the future are discussed.


2014 ◽  
Vol 9 (7) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Shaopeng Wang ◽  
Caihua Zhang ◽  
Guang Yang ◽  
Yanzong Yang

Numerous studies have revealed that regular consumption of certain fruits and vegetables can reduce the risk of many diseases. The rhizome of Zingiber officinale (ginger) is consumed worldwide as a spice and herbal medicine. It contains pungent phenolic substances collectively known as gingerols. 6-Gingerol is the major pharmacologically-active component of ginger. It is known to exhibit a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. 6-Gingerol has been found to possess anticancer activities via its effect on a variety of biological pathways involved in apoptosis, cell cycle regulation, cytotoxic activity, and inhibition of angiogenesis. Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, 6-gingerol has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various diseases. Taken together, this review summarizes the various in vitro and in vivo pharmacological aspects of 6-gingerol and the underlying mechanisms.


2021 ◽  
Vol 14 (12) ◽  
pp. 1274
Author(s):  
Jinyun Chen ◽  
Sunyan Lv ◽  
Jia Liu ◽  
Yanlei Yu ◽  
Hong Wang ◽  
...  

1,3-Oxazole chemicals are a unique class of five-membered monocyclic heteroarenes, containing a nitrogen atom and an oxygen. These alkaloids have attracted extensive attention from medicinal chemists and pharmacologists owing to their diverse arrays of chemical structures and biological activities, and a series of 1,3-oxazole derivatives has been developed into therapeutic agents (e.g., almoxatone, befloxatone, cabotegravir, delpazolid, fenpipalone, haloxazolam, inavolisib). A growing amount of evidence indicates that marine organisms are one of important sources of 1,3-oxazole-containing alkaloids. To improve our knowledge regarding these marine-derived substances, as many as 285 compounds are summarized in this review, which, for the first time, highlights their sources, structural features and biological properties, as well as their biosynthesis and chemical synthesis. Perspective for the future discovery of new 1,3-oxazole compounds from marine organisms is also provided.


2021 ◽  
Vol 75 (6) ◽  
pp. 543-547
Author(s):  
Florian Hubrich ◽  
Alessandro Lotti ◽  
Thomas A. Scott ◽  
Jörn Piel

Nature has evolved a remarkable array of biosynthetic enzymes that install diverse chemistries into natural products (NPs), bestowing them with a range of important biological properties that are of considerable therapeutic value. This is epitomized by the ribosomally synthesized and post-translationally modified peptides (RiPPs), a class of peptide natural products that undergo extensive post-translational modifications to produce structurally diverse bioactive peptides. In this review, we provide an overview of our research into the proteusin RiPP family, describing characterized members and the maturation enzymes responsible for their unique chemical structures and biological activities. The diverse enzymology identified in the first two proteusin pathways highlights the enormous potential of the RiPP class for new lead structures and novel pharmacophore-installing maturases as biocatalytic tools for drug discovery efforts.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 872 ◽  
Author(s):  
Gaber El-Saber Batiha ◽  
Amany Magdy Beshbishy ◽  
Lamiaa G. Wasef ◽  
Yaser H. A. Elewa ◽  
Ahmed A. Al-Sagan ◽  
...  

Medicinal plants have been used from ancient times for human healthcare as in the form of traditional medicines, spices, and other food components. Garlic (Allium sativum L.) is an aromatic herbaceous plant that is consumed worldwide as food and traditional remedy for various diseases. It has been reported to possess several biological properties including anticarcinogenic, antioxidant, antidiabetic, renoprotective, anti-atherosclerotic, antibacterial, antifungal, and antihypertensive activities in traditional medicines. A. sativum is rich in several sulfur-containing phytoconstituents such as alliin, allicin, ajoenes, vinyldithiins, and flavonoids such as quercetin. Extracts and isolated compounds of A. sativum have been evaluated for various biological activities including antibacterial, antiviral, antifungal, antiprotozoal, antioxidant, anti-inflammatory, and anticancer activities among others. This review examines the phytochemical composition, pharmacokinetics, and pharmacological activities of A. sativum extracts as well as its main active constituent, allicin.


2012 ◽  
Vol 90 (3) ◽  
pp. 233-244 ◽  
Author(s):  
Hans J. Vogel

Lactoferrin is an abundant iron-binding protein in milk. This 80 kDa bilobal glycoprotein is also present in several other secreted bodily fluids, as well as in the secondary granules of neutrophils. The potent iron-binding properties of lactoferrin can locally create iron deficiency, and this is an important factor in host defense as it prevents bacteria from growing and forming biofilms. In addition to having antibacterial activity, lactoferrin is now known to have a long list of other beneficial biological properties. It has direct antiviral, antifungal, and even some anticancer activities. It can also promote wound healing and bone growth, or it can act as an iron carrier. Moreover, lactoferrin displays a cytokine-like “alarmin” activity, and it activates the immune system. Simultaneously, it can bind endotoxin (lipopolysaccharide), and in doing so, it modulates the activity of the host immune response. The majority of these intriguing biological activities reside in the unique positively charged N-terminal region of the protein. Interestingly, several peptides, which retain many of the beneficial activities, can be released from this region of lactoferrin. An isoform of the human protein, known as delta-lactoferrin, is expressed inside many cells, where it acts as a transcription factor. Lactoferrin purified from human and bovine milk have very similar but not completely identical properties. Lactoferrin receptors have been identified on the surface of various cells, and some of these can bind both the human and the bovine protein. Because of the extensive health-promoting effects of lactoferrin, there has been considerable interest in the use of bovine or human lactoferrin as a “protein nutraceutical” or as a therapeutic protein. When lactoferrin is used as a “biologic drug”, it seems to be orally active in contrast to most other therapeutic proteins.


2016 ◽  
Vol 11 (10) ◽  
pp. 1934578X1601101 ◽  
Author(s):  
Radmila Ilijeva ◽  
Gerhard Buchbauer

Plants and their extracts are the new field of interest for many scientists and also of some pharmaceutical industries. In order to provide more information for their usage in the prevention and treatment of diseases many clinical trials and researches are being carried out. In this review the biological activities and the mechanism of action of volatile phenylpropanoids (PPs) found in essential oils (EOs) are presented. The aim of this overview is to show that volatile PPs found in EOs can exert many of the biological activities which are generally attributed to EOs. Almost all of the PPs possess antimicrobial, anti-inflammatory and anticancer activities. These are related to the different substitution of the phenylpropane molecule. For each isolated group not only one, but more pharmacological activities can be credited.


Sign in / Sign up

Export Citation Format

Share Document