scholarly journals Degradation of Fatty Acid Phase-Change Materials (PCM): New Approach for Its Characterization

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 982
Author(s):  
Marc Majó ◽  
Ricard Sánchez ◽  
Pol Barcelona ◽  
Jordi García ◽  
Ana Inés Fernández ◽  
...  

The use of adequate thermal energy storage (TES) systems is an efficient way to achieve thermal comfort in buildings reducing the cooling and heating demand. Besides, deploy phase change materials (PCM) to meet and enhance the TES needs is highly effective and widely studied. In this paper, a study of the degradation of two fatty acids is presented, capric and myristic acids, in order to evaluate whether their thermo-physical properties are affected throughout time during service. This was carried out by means of two different types of thermal treatments: degradation at constant temperature (thermal stability test), 60 °C during 100 h and 500 h, and degradation with heating and cooling cycling (thermal cycling stability), between a temperature range from 15 °C to 70 °C with 0.5 °C/min ramp during 500 and 1000 cycles. Despite no significant changes were measured for myristic acid, experimental results revealed a decrease of melting enthalpy of 6.6% in capric acid thermally treated for 500 h. Evidences of chemical degradation were found that might explain the decrease in thermophysical properties during use.

2013 ◽  
Vol 291-294 ◽  
pp. 1159-1163
Author(s):  
Quan Ying Yan ◽  
Li Hang Yue ◽  
Li Li Jin ◽  
Ran Huo ◽  
Lin Zhang

This paper investigated the thermal performance of shape stabilized phase change paraffin and shape-stabilized phase change fatty acid. And the PCMs are mixtures of 60% 46# paraffin and 40% liquid paraffin, 65 % 48# paraffin and 35% liquid paraffin,30%capric acid and 70% lauric acid, 30%capric acid and 70% myristic acid. Support material is high-density polyethylene. The results in this paper show that: Thermal stability of both of the two types of phase change materials are good, thermal stability of shape stabilized phase change fatty acid is better than that of paraffin. Results in this paper can provide references and basis for the application of phase change material walls in the practice building.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shafiq Ishak ◽  
Soumen Mandal ◽  
Han-Seung Lee ◽  
Jitendra Kumar Singh

AbstractLauric acid (LA) has been recommended as economic, eco-friendly, and commercially viable materials to be used as phase change materials (PCMs). Nevertheless, there is lack of optimized parameters to produce microencapsulated PCMs with good performance. In this study, different amounts of LA have been chosen as core materials while tetraethyl orthosilicate (TEOS) as the precursor solution to form silicon dioxide (SiO2) shell. The pH of precursor solution was kept at 2.5 for all composition of microencapsulated LA. The synthesized microencapsulated LA/SiO2 has been characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-Ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM). The SEM and TEM confirm the microencapsulation of LA with SiO2. Thermogravimetric analysis (TGA) revealed better thermal stability of microencapsulated LA/SiO2 compared to pure LA. PCM with 50% LA i.e. LAPC-6 exhibited the highest encapsulation efficiency (96.50%) and encapsulation ratio (96.15%) through Differential scanning calorimetry (DSC) as well as good thermal reliability even after 30th cycle of heating and cooling process.


2021 ◽  
Vol 13 (3) ◽  
pp. 1257
Author(s):  
Luis Godoy-Vaca ◽  
E. Catalina Vallejo-Coral ◽  
Javier Martínez-Gómez ◽  
Marco Orozco ◽  
Geovanna Villacreses

This work aims to estimate the expected hours of Predicted Medium Vote (PMV) thermal comfort in Ecuadorian social housing houses applying energy simulations with Phase Change Materials (PCMs) for very hot-humid climates. First, a novel methodology for characterizing three different types of social housing is presented based on a space-time analysis of the electricity consumption in a residential complex. Next, the increase in energy demand under climate influences is analyzed. Moreover, with the goal of enlarging the time of thermal comfort inside the houses, the most suitable PCM for them is determined. This paper includes both simulations and comparisons of thermal behavior by means of the PMV methodology of four types of PCMs selected. From the performed energy simulations, the results show that changing the deck and using RT25-RT30 in walls, it is possible to increase the duration of thermal comfort in at least one of the three analyzed houses. The applied PCM showed 46% of comfortable hours and a reduction of 937 h in which the thermal sensation varies from “very hot” to “hot”. Additionally, the usage time of air conditioning decreases, assuring the thermal comfort for the inhabitants during a higher number of hours per day.


2013 ◽  
Vol 4 ◽  
pp. 632-637 ◽  
Author(s):  
Tsung Sheng Kao ◽  
Yi Guo Chen ◽  
Ming Hui Hong

By utilizing the strongly induced plasmon coupling between discrete nano-antennas and quantitatively controlling the crystalline proportions of an underlying Ge2Sb2Te5 (GST) phase-change thin layer, we show that nanoscale light localizations in the immediate proximity of plasmonic nano-antennas can be spatially positioned. Isolated energy hot-spots at a subwavelength scale can be created and adjusted across the landscape of the plasmonic system at a step resolution of λ/20. These findings introduce a new approach for nano-circuitry, bio-assay addressing and imaging applications.


2021 ◽  
Vol 4 (5(112)) ◽  
pp. 12-20
Author(s):  
Olga Khliyeva ◽  
Vitaly Zhelezny ◽  
Aleksey Paskal ◽  
Yana Hlek ◽  
Dmytro Ivchenko

Thermal energy storage (TES) plays an important role in solar heat power systems. The use of phase change materials (PCM) and selecting additives to increase the rate of heat accumulation is a promising way to increase the efficiency and reliability of such systems. The objects of the study were pure paraffin wax (PW) and composite PCMs based on it (containing aluminum and copper wool of 30 and 45 μm in diameter, respectively). An experimental setup with a cylindrical measuring cell was created, which was also considered as a model of a capsule with a thermal storage material. The rate of temperature change in the pure PW sample and samples of composite PCMs was experimentally measured. Two modes of heating and cooling were investigated: from 48 to 59 °C (mode with a phase change) and from 30 to 40 °C (mode without phase changes). Heating time from 48 to 59 °C for the PW sample was 13 min., for the PW samples with the content of aluminum wool of 0.00588 and 0.01780 m3·m-3 − 11 and 10.5 min., for the PW samples with the content of copper wool of 0.00524 and 0.01380 m3·m-3 − 11 and 8 min., correspondingly. The minimum heating time from 30 to 40 °C was 6 min. for the sample of PW with 0.01380 m3·m-3 of copper wool in comparison with 9 min. for the sample of pure PW. The expediency of using copper wool as an additive to thermal storage materials of PW to increase the charging and discharging rate of TES devices without significantly raising their price was confirmed. The presence of metal wool in molten PW suppresses bottom-up convective currents, so the main mechanism of heat transfer is thermal conductivity. This fact will contribute to a faster equalization of the temperature field by the height of heat storage capsules


Sign in / Sign up

Export Citation Format

Share Document