scholarly journals Discovery of New Coumarin-Based Lead with Potential Anticancer, CDK4 Inhibition and Selective Radiotheranostic Effect: Synthesis, 2D & 3D QSAR, Molecular Dynamics, In Vitro Cytotoxicity, Radioiodination, and Biodistribution Studies

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2273
Author(s):  
Mona O. Sarhan ◽  
Somaia S. Abd El-Karim ◽  
Manal M. Anwar ◽  
Raghda H. Gouda ◽  
Wafaa A. Zaghary ◽  
...  

Novel 6-bromo-coumarin-ethylidene-hydrazonyl-thiazolyl and 6-bromo-coumarin-thiazolyl-based derivatives were synthesized. A quantitative structure activity relationship (QSAR) model with high predictive power r2 = 0.92, and RMSE = 0.44 predicted five compounds; 2b, 3b, 5a, 9a and 9i to have potential anticancer activities. Compound 2b achieved the best ΔG of –15.34 kcal/mol with an affinity of 40.05 pki. In a molecular dynamic study 2b showed an equilibrium at 0.8 Å after 3.5 ns, while flavopiridol did so at 0.5 Å after the same time (3.5 ns). 2b showed an IC50 of 0.0136 µM, 0.015 µM, and 0.054 µM against MCF-7, A-549, and CHO-K1 cell lines, respectively. The CDK4 enzyme assay revealed the significant CDK4 inhibitory activity of compound 2b with IC50 of 0.036 µM. The selectivity of the newly discovered lead compound 2b toward localization in tumor cells was confirmed by a radioiodination biological assay that was done via electrophilic substitution reaction utilizing the oxidative effect of chloramine-t. 131I-2b showed good in vitro stability up to 4 h. In solid tumor bearing mice, the values of tumor uptake reached a height of 5.97 ± 0.82%ID/g at 60 min p.i. 131I-2b can be considered as a selective radiotheranostic agent for solid tumors with promising anticancer activity.

2020 ◽  
Vol 16 ◽  
Author(s):  
Uma Krithika ◽  
Prabitha P ◽  
Subhankar P. Mandal ◽  
Yuvaraj S ◽  
Priya D ◽  
...  

Background: A series of novel 5-substituted benzylidene rhodanine derivatives using four different amines were designed based on our previously developed CoMSIA (Comparative molecular similarity indices analysis) model for the anticancer activity. Method: The designed rhodanines were synthesised via dithiocarbamate formation, cyclization and Knoevenagel condensation. The synthesized compounds were analyzed by spectral studies to confirm their structures. Result: The synthesized rhodanines were investigated for in vitro anticancer activities and the analogs have displayed mild to significant cytotoxicity against MCF-7 breast cancer cells. The compounds with benzyloxy substitution at the fifth position of rhodanine ring (Compounds 20, 33 and 38) system showed significant cytotoxic activity against MCF-7 cells. CoMSIA, a three-dimensional quantitative structure-activity relationship (3D-QSAR) technique was accomplished to elucidate structure-activity relationships. Conclusions: Based on the information derived from CoMSIA contour plots, some key features for increasing the activity of compounds have been identified and have been used to design new anti-cancer agents. The present developed CoMSIA model displayed good external predictability r2pred of 0.841 and good statistical robustness.


2018 ◽  
Vol 293 (43) ◽  
pp. 16761-16777 ◽  
Author(s):  
Robert M. Cox ◽  
Mart Toots ◽  
Jeong-Joong Yoon ◽  
Julien Sourimant ◽  
Barbara Ludeke ◽  
...  

Respiratory syncytial virus (RSV) represents a significant health threat to infants and to elderly or immunocompromised individuals. There are currently no vaccines available to prevent RSV infections, and disease management is largely limited to supportive care, making the identification and development of effective antiviral therapeutics against RSV a priority. To identify effective chemical scaffolds for managing RSV disease, we conducted a high-throughput anti-RSV screen of a 57,000-compound library. We identified a hit compound that specifically blocked activity of the RSV RNA-dependent RNA polymerase (RdRp) complex, initially with moderate low-micromolar potency. Mechanistic characterization in an in vitro RSV RdRp assay indicated that representatives of this compound class block elongation of RSV RNA products after initial extension by up to three nucleotides. Synthetic hit-to-lead exploration yielded an informative 3D quantitative structure–activity relationship (3D-QSAR) model and resulted in analogs with more than 20-fold improved potency and selectivity indices (SIs) of >1,000. However, first-generation leads exhibited limited water solubility and poor metabolic stability. A second optimization strategy informed by the 3D-QSAR model combined with in silico pharmacokinetics (PK) predictions yielded an advanced lead, AVG-233, that demonstrated nanomolar activity against both laboratory-adapted RSV strains and clinical RSV isolates. This anti-RSV activity extended to infection of established cell lines and primary human airway cells. PK profiling in mice revealed 34% oral bioavailability of AVG-233 and sustained high drug levels in the circulation after a single oral dose of 20 mg/kg. This promising first-in-class lead warrants further development as an anti-RSV drug.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 477 ◽  
Author(s):  
Guo-Qiang Kang ◽  
Wen-Gui Duan ◽  
Gui-Shan Lin ◽  
You-Pei Yu ◽  
Xiao-Yu Wang ◽  
...  

A series of novel (Z)- and (E)-3-caren-5-one oxime sulfonates were designed and synthesized in search of potent antifungal agents. The structures of the intermediates and target compounds were confirmed by UV-Vis, FTIR, NMR, and ESI-MS. The in vitro antifungal activity of the target compounds was preliminarily evaluated against Cercospora arachidicola, Physalospora piricola, Alternaria solani, Rhizoeotnia solani, Bipolaris maydis and Colleterichum orbicalare at 50 µg/mL. The bioassay results indicated that the target compounds exhibited the best antifungal activity against P. piricola, in which compounds 4b, 4f, 4m, 4e, 4j, 4l, 4y, 4d, and 4p had excellent inhibition rates of 100%, 100%, 100%, 92.9%, 92.9%, 92.9%, 92.9%, 85.7%, and 85.7%, respectively, showing much better antifungal activity than that of the commercial fungicide chlorothanil. Both the compounds 4y and 4x displayed outstanding antifungal activity of 100% against B. myadis, and the former also displayed outstanding antifungal activity of 100% against R. solani. In order to design more effective antifungal compounds against P. piricola, the analysis of three-dimensional quantitative structure-activity relationship (3D-QSAR) was carried out using the CoMFA method, and a reasonable and effective 3D-QSAR model (r2 = 0.990, q2 = 0.569) has been established.


2018 ◽  
Vol 21 (4) ◽  
pp. 262-270 ◽  
Author(s):  
Zehao Huang ◽  
Na Li ◽  
Kaifeng Rao ◽  
Cuiting Liu ◽  
Zijian Wang ◽  
...  

Background: More than 2,000 chemicals have been used in the tannery industry. Although some tannery chemicals have been reported to have harmful effects on both human health and the environment, only a few have been subjected to genotoxicity and cytotoxicity evaluations. Objective: This study focused on cytotoxicity and genotoxicity of ten tannery chemicals widely used in China. Materials and Methods: DNA-damaging effects were measured using the SOS/umu test with Salmonella typhimurium TA1535/pSK1002. Chromosome-damaging and cytotoxic effects were determined with the high-content in vitro Micronucleus test (MN test) using the human-derived cell lines MGC-803 and A549. Conclusion: The cytotoxicity of the ten tannery chemicals differed somewhat between the two cell assays, with A549 cells being more sensitive than MGC-803 cells. None of the chemicals induced DNA damage before metabolism, but one was found to have DNA-damaging effects on metabolism. Four of the chemicals, DY64, SB1, DB71 and RR120, were found to have chromosome-damaging effects. A Quantitative Structure-Activity Relationship (QSAR) analysis indicated that one structural feature favouring chemical genotoxicity, Hacceptor-path3-Hacceptor, may contribute to the chromosome-damaging effects of the four MN-test-positive chemicals.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 533
Author(s):  
Eloy Pena-Rodríguez ◽  
Maria Lajarin-Reinares ◽  
Aida Mata-Ventosa ◽  
Sandra Pérez-Torras ◽  
Francisco Fernández-Campos

Follicular targeting has gained more attention in recent decades, due to the possibility of obtaining a depot effect in topical administration and its potential as a tool to treat hair follicle-related diseases. Lipid core ethyl cellulose lipomers were developed and optimized, following which characterization of their physicochemical properties was carried out. Dexamethasone was encapsulated in the lipomers (size, 115 nm; polydispersity, 0.24; zeta-potential (Z-potential), +30 mV) and their in vitro release profiles against dexamethasone in solution were investigated by vertical diffusion Franz cells. The skin biodistribution of the fluorescent-loaded lipomers was observed using confocal microscopy, demonstrating the accumulation of both lipomers and fluorochromes in the hair follicles of pig skin. To confirm this fact, immunofluorescence of the dexamethasone-loaded lipomers was carried out in pig hair follicles. The anti-inflammatory (via TNFα) efficacy of the dexamethasone-loaded lipomers was demonstrated in vitro in an HEK001 human keratinocytes cell culture and the in vitro cytotoxicity of the nanoformulation was investigated.


Drug Research ◽  
2020 ◽  
Author(s):  
Pinki Yadav ◽  
Kashmiri Lal ◽  
Ashwani Kumar

AbstractThe in vitro antimicrobial properties of some chalcones (1a–1c ) and chalcone tethred 1,4-disubstituted 1,2,3-triazoles (2a–2u) towards different microbial strains viz. Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger and Candida albicans are reported. Compounds 2g and 2u exhibited better potency than the standard Fluconazole with MIC values of 0.0063 µmol/mL and 0.0068 µmol/mL, respectively. Furthermore, molecular docking was performed to investigate the binding modes of two potent compounds 2q and 2g with E. coli topoisomerase II DNA gyrase B and C. albicans lanosterol 14α-demethylase, respectively. Based on these results, a statistically significant quantitative structure activity relationship (QSAR) model was successfully summarized for antibacterial activity against B. subtilis.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 808
Author(s):  
Ahmed Al Saqr ◽  
El-Sayed Khafagy ◽  
Ahmed Alalaiwe ◽  
Mohammed F. Aldawsari ◽  
Saad M. Alshahrani ◽  
...  

Green synthesis of gold nanoparticles (GNPs) with plant extracts has gained considerable interest in the field of biomedicine. Recently, the bioreduction nature of herbal extracts has helped to synthesize spherical GNPs of different potential from gold salt. In this study, a fast ecofriendly method was adopted for the synthesis of GNPs using fresh peel (aqueous) extracts of Benincasa hispida, which acted as reducing and stabilizing agents. The biosynthesized GNPs were characterized by UV–VIS and Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering. In addition, the in vitro antibacterial and anticancer activities of synthesized GNPs were investigated. The formation of gold nanoparticles was confirmed by the existence of a sharp absorption peak at 520 nm, corresponding to the surface plasmon resonance (SPR) band of the GNPs. TEM analysis revealed that the prepared GNPs were spherical in shape and had an average particle size of 22.18 ± 2 nm. Most importantly, the synthesized GNPs exhibited considerable antibacterial activity against different Gram-positive and Gram-negative bacteria. Furthermore, the biosynthesized GNPs exerted remarkable in vitro cytotoxicity against human cervical cancer cell line, while sparing normal human primary osteoblast cells. Such cytotoxic effect was attributed to the increased production of reactive oxygen species (ROS) that contributed to the damage of HeLa cells. Collectively, peel extracts of B. hispida can be efficiently used for the synthesis of GNPs, which can be adopted as a natural source of antimicrobial and anticancer agent.


2021 ◽  
Vol 16 (10) ◽  
pp. 50-58
Author(s):  
Ali Qusay Khalid ◽  
Vasudeva Rao Avupati ◽  
Husniza Hussain ◽  
Tabarek Najeeb Zaidan

Dengue fever is a viral infection spread by the female mosquito Aedes aegypti. It is a virus spread by mosquitoes found all over the tropics with risk levels varying depending on rainfall, relative humidity, temperature and urbanization. There are no specific medications that can be used to treat the condition. The development of possible bioactive ligands to combat Dengue fever before it becomes a pandemic is a global priority. Few studies on building three-dimensional quantitative structure-activity relationship (3D QSAR) models for anti-dengue agents have been reported. Thus, we aimed at building a statistically validated atom-based 3D-QSAR model using bioactive ligands reported to possess significant anti-dengue properties. In this study, the Schrodinger PhaseTM atom-based 3D QSAR model was developed and was validated using known anti-dengue properties as ligand data. This model was also tested to see if there was a link between structural characteristics and anti-dengue activity of a series of 3-acyl-indole derivatives. The established 3D QSAR model has strong predictive capacity and is statistically significant [Model: R2 Training Set = 0.93, Q2 (R2 Test Set) = 0.72]. In addition, the pharmacophore characteristics essential for the reported anti-dengue properties were explored using combined effects contour maps (coloured contour maps: blue: positive potential and red: negative potential) of the model. In the pathway of anti-dengue drug development, the model could be included as a virtual screening method to predict novel hits.


2019 ◽  
Vol 15 (11) ◽  
pp. 2151-2163 ◽  
Author(s):  
Lei Fang ◽  
Huaying Fan ◽  
Chunjing Guo ◽  
Linhan Cui ◽  
Peng Zhang ◽  
...  

Polymeric nanoparticles were widely used as delivery vehicles for targeted delivery of anticancer drugs, because of their targeting property and versatility. Mitochondria are one of the important organelles that regulate the apoptosis of cancer cells and can be considered as a pivotal target for cancer treatment. A pH-responsive charge-reversal and mitochondrial targeting nanoparticles, Vitamin B6-oligomeric hyaluronic acid-dithiodipropionic acid-berberine (B6-oHA-SS-Ber), were prepared in this study. Ber is a lipophilic cation that was conjugated with oHA through disulfide bonds to produce mitochondria-targeted conjugates (oHA-SS-Ber). B6 was conjugated to oHA to obtain B6-oHA-SS-Ber and the two types of Cur-loaded nanoparticles (Cur-NPs) were formulated by the dialysis method. Due to pKa of B6, the charge they carried in the tumor tissue acidic microenvironment can be transferred from negative charge to positive charge, further targeting mitochondria. In our study, we successfully synthesized B6-HA-SS-Ber and characterized the structure by 1H-NMR. According to the results of transmission electron microscopy (TEM), we found that the B6-oHA-SS-Ber/Cur micelles could self-assembled in water to form spherical nanoparticles, with a hydrodynamic diameter of 172.9±13 nm. Moreover, in vitro cytotoxicity, cellular uptake, lysosome escape and mitochondrial distribution researches revealed the better effect of B6-oHA-SS-Ber/Cur micelles in comparison to oHA-SS-Ber/Cur. In vivo anticancer activities indicated that the B6-oHA-SS-Ber/Cur micelles exhibited effective inhibition of tumor growth.


Sign in / Sign up

Export Citation Format

Share Document