scholarly journals Development and Characterization of Novel Biopolymer Derived from Abelmoschus esculentus L. Extract and Its Antidiabetic Potential

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3609
Author(s):  
Abd Elmoneim O. Elkhalifa ◽  
Eyad Al-Shammari ◽  
Mohd Adnan ◽  
Jerold C. Alcantara ◽  
Khalid Mehmood ◽  
...  

Abelmoschus esculentus (Okra) is an important vegetable crop, widely cultivated around the world due to its high nutritional significance along with several health benefits. Different parts of okra including its mucilage have been currently studied for its role in various therapeutic applications. Therefore, we aimed to develop and characterize the okra mucilage biopolymer (OMB) for its physicochemical properties as well as to evaluate its in vitro antidiabetic activity. The characterization of OMB using Fourier-transform infrared spectroscopy (FT-IR) revealed that okra mucilage containing polysaccharides lies in the bandwidth of 3279 and 1030 cm−1, which constitutes the fingerprint region of the spectrum. In addition, physicochemical parameters such as percentage yield, percentage solubility, and swelling index were found to be 2.66%, 96.9%, and 5, respectively. A mineral analysis of newly developed biopolymers showed a substantial amount of calcium (412 mg/100 g), potassium (418 mg/100 g), phosphorus (60 mg/100 g), iron (47 mg/100 g), zinc (16 mg/100 g), and sodium (9 mg/100 g). The significant antidiabetic potential of OMB was demonstrated using α-amylase and α-glucosidase enzyme inhibitory assay. Further investigations are required to explore the newly developed biopolymer for its toxicity, efficacy, and its possible utilization in food, nutraceutical, as well as pharmaceutical industries.

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Yarrappagaari Suresh ◽  
Gutha Rajasekar ◽  
Thopireddy Lavanya ◽  
Benne Lakshminarsimhulu ◽  
Kesireddy Sathyavelu Reddy ◽  
...  

Abstract Background Cleome viscosa is considered as an important medicinal plant extensively used in India, China, Bangladesh, and a few countries in Africa. In the present study, in vitro anti-radical and antidiabetic potential of isolated fractions of methanolic extract of C. viscosa whole plant (MeCV) has been investigated. The identification of polyphenols and their related functional groups in the bioactive fraction was categorized by using HPLC and FT-IR. Results The total phenolic and flavonoid contents of F-D were higher than those of F-A, F-B, and F-C. The F-D exhibited superior antioxidant capacity when compared with the remaining three fractions. However, the F-D showed the highest glucose diffusion activity over the 30 min–27 h incubation period and also inhibited both α-glucosidase and α-amylase enzyme activity. HPLC analysis revealed the presence of the two known compounds (protocatechuic acid hexoside, rutin) and six unknown compounds in the F-D. FTIR spectrum confirmed the presence of phenol group. Conclusion The isolated F-D obtained from MeCV displayed superior antioxidant and antidiabetic activity which indicate the presence of polyphenols in the fraction. The data findings of the present study support the traditional uses of the whole plant of C. viscosa as a promising natural source of biological medicines for oxidative stress and diabetes.


NANO ◽  
2013 ◽  
Vol 08 (04) ◽  
pp. 1350042 ◽  
Author(s):  
JING WANG ◽  
LI GUO ◽  
LI FANG MA

In this paper, we firstly synthesized glycyrrhetinic acid-modified double amino-terminated poloxamer 188 (GA–NH–POLO–NH–GA). The structure of the synthesized compound was confirmed by 1H-NMR and Fourier transform infrared (FT-IR) spectroscopy. Then the nanoparticles composed of GA–NH–POLO–NH–GA/chitosan (GA–NH–POLO–NH–GA/CTS) were prepared by an ionic gelation process. The characterization of the nanoparticles was measured by dynamic light scattering (DLS) and scanning electron microscope (SEM). The results showed that the nanoparticles were well dispersed with a spherical shape and the particle size was distributed between 100 nm and 300 nm. The cytotoxicity based on MTT assay against cells (QGY-7703 cells and L929 cells) showed that the nanoparticles had low toxicity and good biocompatibility. The encapsulation efficiency and drug loading of 5-fluorouracil-loaded nanoparticles (5-FU nanoparticles) were measured by high-performance liquid chromatography (HPLC) and fluorescence spectroscopy, ultraviolet-visible (UV-vis) absorbance. The encapsulation of 5-Fu-loaded CTS nanoparticles was 12.8% and the drug loading was 2.9%, while the encapsulation of 5-Fu-loaded GA–NH–POLO–NH–GA/CTS nanoparticles was 20.9% and the drug loading was 3.36%. The release profile showed that the GA–NH–POLO–NH–GA/CTS nanoparticles were available for sustained release of 5-Fu. The GA–NH–POLO–NH–GA/CTS nanoparticles have a higher affinity to the QGY-7703 cells, so indicated that the GA–NH–POLO–NH–GA/CTS nanoparticles have the capacity of liver-targeting in vitro.


Author(s):  
Rini Hamsidi ◽  
Wahyuni Wahyuni ◽  
Adryan Fristiohady ◽  
Muhammad Hajrul Malaka ◽  
Idin Sahidin ◽  
...  

Carthamus tinctorius Linn, also known as safflower, is a plant with the potential of being used in the production of antimalarial drugs. The purpose of this study was to isolate and identify the steroid compounds in the safflower and determine its antimalarial activity in vitro. The isolation process was conducted through extraction and chromatography methods. Then, the characterization of the isolated compounds was conducted through spectroscopic techniques which include Fourier Transform Infrared Spectroscopy (FT-IR), NMR 1-D (1H and 13C-NMR), and NMR 2-D (HMQC, HMBC, and H-H COZY) as well as comparing data with the existing literatures. In addition, the tests conducted were with variations of isolate concentrations (10, 1, 0.1, 0.01, and 0.001 μg/mL) against 3D7 strain of Plasmodium falciparum. Based on the FT-IR spectroscopic data, the steroid compounds isolated from safflowers might be stigmasterols. In addition, the isolates had -OH functional group in the region of 3431 cm-1, C-O in the region of 1053 cm-1, and Csp3-H in regions of 2960, 2934, and 2865 cm-1. The NMR 1-D data showed presence of 29 carbon atoms, while the protons were 48 in number. Furthermore, the IC50 value of the compound was 34.03 μg/mL with a percentage inhibition of 43.92% against the growth of P. falciparum. Therefore, it was classified as inactive agent in inhibiting the growth of malaria parasites, however, it could be used as a marker compound in C. tinctorius Linn extract.


2019 ◽  
Vol 31 (10) ◽  
pp. 2191-2196 ◽  
Author(s):  
S. Rathinamanivannan ◽  
K. Megha ◽  
Raja Chinnamanayakar ◽  
Ashok Kumar ◽  
M.R. Ezhilarasi

The new series of 1-(4,5-dihydro-5-phenyl-3-diphenylpyrazol-1-yl)butan-1-one derivatives were synthesized by cyclization method using biphenyl chalcone with n-butyric acid and hydrazine hydrate. The synthesized 1-(4,5-dihydro-5-phenyl-3-diphenylpyrazol-1-yl)butan-1-one derivatives chemical structures were confirmed from spectral data such as FT-IR, 1H and 13C NMR. 2-Pyrazoline derivatives were docked with bacterial (1UAG) and breast cancer (1OQA) protein. Based on high binding affinity score, the best compound was subjected to in vitro anticancer activity by MTT assay. Also, antimicrobial activity were studied for synthesized 2-pyrazoline derivatives.


2012 ◽  
Vol 499 ◽  
pp. 99-103
Author(s):  
Jun Chang ◽  
Cheng Wu Li ◽  
Gang Li

A series of polyesters containing 5-fluorouracil in the main chain were prepared by reacting potassium salt of 5-fluorouracil with different molecular weight ω-chloroalkyl chloroacetyl esters.The copolymers were characterized by FT-IR, 1H-NMR, VPO and UV spectroscopy. The drug release profile in vitro of the copolymers were studied, the results showed prodrug could slow release 5-FU or 5-FU units in different solution, they may be likely to become potential antitumor prodrug.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Samson A. Adeyemi ◽  
Yahya E. Choonara ◽  
Pradeep Kumar ◽  
Lisa C. du Toit ◽  
Viness Pillay

The aim of this study is to effectively enhance antitumor activities of endostatin by preparing polymeric nanocarriers. NMR and FT-IR spectra confirmed the successful grafting of the CHT-g-PEI and CHT-g-PEI-PEG-NH2 conjugates. SEM micrographs confirmed the shape of endostatin-loaded nanoparticles to be spherical while both TEM and zeta size results showed nanoparticle’s average size to be 100.6 nm having a positively charged surface with zeta potential of 7.95 mV. The concentrations of CHT and TPP as well as the changing pH conditions account for the increased swelling pattern of endostatin-loaded nanoparticles and influenced endostatin release in vitro. PEI increased the overall amine protonation while PEG aggravated endostatin encapsulation and release. Nanoparticles swell and release endostatin at acidic tumor pH of 6.8 compared to physiological pH of 7.4. The native CHT-g-PEI-PEG-NH2 conjugate showed high cytocompatibility above 80% cell viability across tested formulations. Endostatin-loaded nanoparticles showed a significant reduction in cell viability across tested formulations, with 5.32% cell death at 125 μg/mL and 13.36% at 250 μg/mL following 24 hours’ incubation period. Interestingly, more than a fourfold (61.68%) increment in cytotoxicity was observed at nanoparticle concentration of 1000 μg/mL. It was concluded that CHT-g-PEI-PEG-NH2 is an effective cargo for endostatin delivery with antiangiogenic effect in squamous cell carcinoma.


2012 ◽  
Vol 9 (2) ◽  
pp. 962-969 ◽  
Author(s):  
Zahraa Salim M. Al-Garawi ◽  
Ivan Hameed R. Tomi ◽  
Ali Hussein R. Al-Daraji

In this study, two new Schiff base compounds derived from the condensation reaction ofL-glycine andL-tryptophan with 4-methylbenzal-dehyde have been synthesized. The Schiff base compounds were characterized by FT-IR, UV and1H NMR spectroscopy. Their effects on the activity of total (ACP), prostatic (PAP) and non prostatic (NPA) acid phosphatase enzymes were studied. The Schiff base derived fromL-glycine (A) demonstrated inhibition effect on the ACP and NPA activities and activation effect on PAP activity. The Schiff base derived fromL-tryptophan (B) demonstrated semi fixed inhibition effects on the ACP and NPA activities at high concentrations (5.5×10-2, 5.5×10-3and 5.5×10-4M) and activator effect at low concentration (5.5×10-5M) while it was exhibits as activator on PAP activity.


2021 ◽  
Vol 5 (1) ◽  
pp. 26-38
Author(s):  
Arun Dev Sharma ◽  
Mohit Farmaha ◽  
Inderjeet Kaur ◽  
Narveer Singh

Eucalyptus globules is an widely distributed in tropical and subtropical regions. It has been widely used as folk medicine, and folk cosmetic owing to its antioxidant values. Despite its importance, phytochemical and pharmacological studies remain infancy. This study was aimed at extraction of essential oil by steam-distillation and evaluation of bioactive components, antioxidant, antimicrobial, anti-inflammatory activities along with analysis by UV-VIS, FT-IR and Fluorescent techniques. Fast protein liquid chromatography (FPLC) was used to confirm the presence of polyphenols. Different antioxidant activities like DPPH., ABTS.+, .OH, superoxide, nitric oxide and reducing power of the essential oil. Essential oil was analyzed by UV-VIS, FT-IR and Fluorescent techniques. In vitro antimicrobial activity was also monitored. FT-IR fingerprint qualitative analysis was performed using commercial standards. Considerable amount of flavonoids were detected in essential oil.  Oil exhibited considerable scavenging activities of ABTS.+, .OH, superoxide, nitric oxide and reducing power. UV-VIS, FT-IR analysis revealed the presence of polyphenolics in essential oil. Fluorescent spectroscopy revealed the presence of fluorophores in essential oil. FPLC and FT-IR fingerprint analysis revealed the presence of bioactive constituents like rutin, tannic acid, vanillic acid and ascorbic acid in the essential oil. A strong anti-inflammatory activity of oil was observed using fluorescent spectroscopy. An appreciable in vitro antibacterial activity against gram-negative bacteria like Acetobacter aceti and Pseudomonas aeruginosa was detected. The data provides the scientific support to the use of essential oil from Eucalyptus globules as a potent herbal source of bioactive compounds possessing natural antioxidant activities in food and pharmaceutical industries.


2021 ◽  
Vol 11 (1) ◽  
pp. 3249-3260

Herein, we describe the synthesis and characterization of a Schiff base ligand (E)-N'-(2-hydroxybenzylidene)-4-methoxybenzohydrazide (HBMB) and its Mn(II), Ni(II), and Cu(II) metal complexes (C1-C3) respectively. The ligand HBMB was synthesized by reacting condensation of salicylaldehyde and 4-methoxy benzohydrazide in a 1:1 molar ratio. The structure of HBMB and its metal complexes (C1-C3) were evaluated by using UV-Vis, FT-IR, 1H-NMR, mass spectroscopy as well as on the basis of elemental analysis, conductivity measurements, and thermogravimetric techniques (TGA). The synthesized molecules' tumoricidal properties were performed against human breast cancer (MCF-7) and colon cancer (HT 29) cell lines. The biological results indicated that the ligand, HBMB, and metal complexes possess dose-dependent selective cytotoxicity against the tested carcinoma cells. The synthesized compounds were further evaluated for their in vitro antimicrobial activities against Gram-positive bacteria (Staphylococcus aureus), Gram-negative bacteria (Escherichia coli), and fungal strains (Aspergillus niger).


2019 ◽  
Vol 9 (3) ◽  
pp. 217-228
Author(s):  
Vipin Kumar Sharma ◽  
Bhaskar Mazumder ◽  
Vinod Nautiyal ◽  
Prince Prashant Sharma ◽  
Yusra Ahmed

Background: The polymeric hydrocolloids of natural origin such as gums and mucilages have their own significance in food and pharmaceutical industries due to safety, cost, biodegradability, biocompatibility, etc. Objective: This study includes the assessment of feasibility of gummy exudates of Cochlospermum religiosum for development of microspheres through emulsification technique. Methods: The effects of exudates concentration, glutaraldehyde amount and process temperature were analyzed on particle-size and swelling dynamics of developed microspheres. The formulations were also characterized by thermal decomposition and powder X-ray diffraction technique to assess the effect of crosslinking. Results: The photomicrographs of preparations revealed the formation of microspheres with smooth, spherical and free-flowing nature. The swelling dynamics followed Fick’s diffusion mechanism for swelling media. Fourier transform infrared spectroscopy showed the formation of ether-linkage after crosslinking of exudates by glutaraldehyde. The thermogravimetric curves disclosed the formation of strong bonds during crosslinking. Conclusion: The ease of gummy exudates of Cochlospermum religiosum for microspheres formation ascribed the potential of these formulations to incorporate therapeutic agent(s) to be applied as novel drug-carriers.


Sign in / Sign up

Export Citation Format

Share Document