scholarly journals Identification of the Impurities in Bopu Powder® and Sangrovit® by LC-MS Combined with a Screening Method

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3851
Author(s):  
Zhuang Dong ◽  
Mengting Liu ◽  
Xiaohong Zhong ◽  
Xiaoyong Ou ◽  
Xuan Yun ◽  
...  

Bopu powder® and Sangrovit® were developed from Macleayacordata and are widely used in agriculture and animal husbandry, but their impurities have been rarely reported in the literature. Impurity analysis is of great importance to the quality and safety of veterinary drugs. In this study, high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS) combined with a screening method was used to screen and characterize the impurities in Bopu powder® and Sangrovit®. A total of 58 impurities were screened from Bopu powder® and Sangrovit® using the screening strategies, of which 39 were identified by their accurate m/z value, characteristic MS/MS data, and fragmentation pathways of references. This established method was used for impurity analysis for the first time and proved to be a useful and rapid tool to screen and identify the impurities of Bopu powder® and Sangrovit®, especially for those at trace levels in a complex sample. In addition, this study marks the first comprehensive research into impurities in these two products and has great significance for the systematic detection of impurities in other plant-derived drugs.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Gang Wang ◽  
Shun Yao ◽  
Xiu-Xiu Zhang ◽  
Hang Song

2,2-Diphenyl-1-picrylhydrazyl-ultra-high performance liquid chromatography-Q-time-of-flight mass spectrometry (DPPH-UPLC-Q-TOF/MS), as a rapid and efficient means, now was used for the first time to screen antioxidants fromSelaginella doederleinii. The nine biflavone compounds were screened as potential antioxidants. The biflavones were structurally identified and divided into the three types, that is, amentoflavone-type, robustaflavone-type, and hinokiflavone-type biflavonoids. Among the compounds bilobetin (3) and putraflavone (8) were found fromSelaginella doederleiniifor the first time and others including amentoflavone (1), robustaflavone (2), 4′-methoxy robustaflavone (4), podocarpusflavone A (5), hinokiflavone (6), ginkgetin (7), and heveaflavone (9) were identified previously in the plant. Moreover, nine biflavones possessed a good antioxidant activity via their DPPH free radical scavenging. It demonstrates that DPPH-UPLC-Q-TOF/MS exhibits strong capacity in separation and identification for small molecule. The method is suitable for rapid screening of antioxidants without the need for complicated systems and additional instruments.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1585 ◽  
Author(s):  
Xiao Xiao ◽  
Wei Ren ◽  
Nan Zhang ◽  
Tao Bing ◽  
Xiangjun Liu ◽  
...  

The fruits, leaves and root barks of L. barbarum plant are widely used as functional foods and as ingredients in traditional Chinese prescriptions and patent medicines. They are considered to have different pharmacological activities and health benefits because of their diverse constituents. Here, the chemical constituents of the extracts from fruits, leaves and root barks of L. barbarum were compared by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UPLC-HR-MS). A total of 131 compounds were identified and seven of them were quantified. Among them, 98, 28 and 35 constituents were detected in fruits, leaves and root barks respectively. Dicaffeoylspermidine/spermine derivatives were the most detected compounds (74/131); among them, dicaffeoylspermine isomers and propionyl-dicaffeoylspermidine were found in root barks in very large amounts (e.g., kukoamine B = 10.90 mg/g dry powder); dicaffeoyl-spermidine isomers were detected in fruits/leaves in a high amount, and many of their glycosylated derivatives were mainly detected in fruits. In addition, six saponins from L. barbarum fruits were reported for the first time, and 5,6-dihydrosolasonine was reported for the first time in plants. The activity assays showed that the root bark extract possessed the strongest antioxidative activity and cytotoxicity, which was presumed due to the large amount of dicaffeoylspermine/spermidines in root barks. Fourteen potential bioactive components from fruits were identified by a target cell-based screening method. These results will help to understand the different biological activities of these three parts of L. barbarum plant and will benefit the discovery of new functional components.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ashwani Mittal ◽  
Preeti Kadyan ◽  
Anjum Gahlaut ◽  
Rajesh Dabur

High performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometer was used for separation and identification of phenolic and other compounds in the water extracts of Saraca asoca (Roxb.), De. Wilde. The aim of the study was to identify and evaluate the distribution of phenolic compounds in the different parts of the plant. The identity of compounds was established through the comparison with standards and characteristic base peaks as well as other daughter ions. In crude extracts, 34 catechin derivatives, 34 flavonoids, and 17 other compounds were identified. Interestingly, further analysis of compounds showed plant part specific unique pattern of metabolites; that is, regenerated bark is observed to be the best source for catechin/catechin derivative while flowers were found to be the source for wide variety of flavonoids. Moreover, these plant part specific compounds can be used as biomarkers for the identification of plant material or herbal drugs. Overall, the present study provides for the first time a comprehensive analysis of the phenolic components of this herb which may be helpful not only to understand their usage but also to contribute to quality control as well.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 847
Author(s):  
Piotr Kuś

The content of selected major nitrogen compounds including nucleosides and their derivatives was evaluated in 75 samples of seven varieties of honey (heather, buckwheat, black locust, goldenrod, canola, fir, linden) by targeted ultra-high performance liquid chromatography-diode array detector - high-resolution quadrupole time-of-flight mass spectrometry (UHPLC-DAD-QqTOF-MS) and determined by UHPLC-DAD. The honey samples contained nucleosides, nucleobases and their derivatives (adenine: 8.9 to 18.4 mg/kg, xanthine: 1.2 to 3.3 mg/kg, uridine: 17.5 to 51.2 mg/kg, guanosine: 2.0 to 4.1 mg/kg; mean amounts), aromatic amino acids (tyrosine: 7.8 to 263.9 mg/kg, phenylalanine: 9.5 to 64.1 mg/kg; mean amounts). The amounts of compounds significantly differed between some honey types. For example, canola honey contained a much lower amount of uridine (17.5 ± 3.9 mg/kg) than black locust where it was most abundant (51.2 ± 7.8 mg/kg). The presence of free nucleosides and nucleobases in different honey varieties is reported first time and supports previous findings on medicinal activities of honey reported in the literature as well as traditional therapy and may contribute for their explanation. This applies, e.g., to the topical application of honey in herpes infections, as well as its beneficial activity on cognitive functions as nootropic and neuroprotective, in neuralgia and is also important for the understanding of nutritional values of honey.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 84
Author(s):  
Mohammed Aourach ◽  
Ana V. González-de-Peredo ◽  
Mercedes Vázquez-Espinosa ◽  
Haiat Essalmani ◽  
Miguel Palma ◽  
...  

The interest in natural phenolic compounds has increased because of their attractive use especially as antioxidant and antimicrobial agents in foods. The large content in phenolic compounds of interest in Santolina chamaecyparissus L. (S. chamaecyparissus) makes this plant a target source that is worthy of note. In this work, new extraction technologies comprising ultrasound (UAE) and microwave (MAE) assisted extraction of the phenolic compounds in S. chamaecyparissus have been developed, optimized, and compared. Several extraction factors have been optimized based on a Box-Behnken design. Such optimized factors include the percentage of methanol in water (25–75%), the temperature (10–70 °C), the ultrasound amplitude (20–80%), the ultrasound cycle (0.2–1 s), the solvent pH (2–7) and the solvent-sample ratio (5/0.2–15/0.2 mL/g) with regard to UAE, while the percentage of methanol in water (50–100%), the temperature (50–100 °C), the pH (2–7) and the solvent-sample ratio (5/0.2–15/0.2 mL/g) were optimized for MAE. The solvent composition was the most influential parameter both on MAEs (64%) and UAEs (74%). The extraction optimum time was established as 15 min for MAE and 25 min for UAE. Five major phenolic compounds were detected and identified by Ultra-High-Performance Liquid Chromatography—Quadrupole Time of Flight—Mass Spectrometry (UHPLC-QToF-MS) in the extracts: chlorogenic acid, quercetin 3-O-galactoside, quercetin 3-O-glucoside, isoorientin, and cynarin. With the exception of chlorogenic acid, the other four compounds have been identified for the first time in S. chamaecyparissus. The findings have confirmed that MAE is a significantly more efficient extraction method than UAE to extract phenolic compounds from S. chamaecyparissus.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3289 ◽  
Author(s):  
Wang Jian ◽  
Gao YunLing ◽  
Chen YiLong ◽  
Chen YiWen ◽  
Zhang Yi ◽  
...  

Lamiophlomis rotata (L. rotata), is known as “Daba” in the Tibetan region, Ajuga ovalifolia and Oreosolen wartii have also been utilized as substitutes for “Daba”, however, only L. rotata has been officially listed in the Chinese Pharmacopoeia for hemostasis preparations. To safely apply the traditional uses of the herb, internal transcribed spacer 2 (ITS2) DNA barcodes were employed to discriminate L. rotata from its adulterants. For further evaluation of the quality of different originating habitats, the chemical profiles of 25 samples were determined by ultra-high-performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-QTOF-MS) coupled with multivariate analyses. ITS2 DNA barcodes differentiated L. rotata from O. wartii and A. ovalifolia accurately. A neighbor-joining (NJ) tree showed that three origins clustered into three clades. Forty-nine compounds were identified in the total ion current (TIC) profile of L. rotata. Additionally, two pairs of isomers were identified for the first time by using mass spectrometry fragmentation. The differences between the variable habitats were determined by multivariate statistical analysis of the UPLC-QTOF-MS data from 25 specimens. Ten compounds were identified as the characteristic markers distinguishing the sample from four geographical origins. The results also suggest that samples from Qinghai and Sichuan province would be the most suitable choice for traditional prescriptions and preparations.


Holzforschung ◽  
2015 ◽  
Vol 69 (3) ◽  
pp. 281-296 ◽  
Author(s):  
Yu Yanase ◽  
Kazuyuki Sakamoto ◽  
Takanori Imai

Abstract The norlignan (NorL) is a class of secondary metabolites, which occurs in the heartwood (hW) of certain softwood species. Although the NorL is often assumed to be secondarily altered (e.g., oxidized and/or polymerized in the hW over time), the formation and the chemical structure of oxidized/polymerized products remained unclear. In this study, we focused on the question whether an NorL oligomer/polymer exists in the hW of Cryptomeria japonica. First, NorL model polymers were prepared by horseradish peroxidase-catalyzed oxidation and their chemical structures were investigated by size exclusion chromatography-high-performance liquid chromatography (SEC-HPLC), nuclear magnetic resonance (NMR), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Second, methanol (MeOH) extracted from the hW of C. japonica was fractionated, and one of the fractions contained NorL polymers as demonstrated by its chromatographic and spectrometric data in comparison with those of model polymers. Third, five kinds of agatharesinol (AGA) model dimers were synthesized and their chemical structures were determined. 13C-NMR signals corresponding to the model dimer structures were observed in the NMR spectrum of the natural polymer fraction. In summary, an NorL polymer was found in the hW of C. japonica, and its preliminary chemical structure was proposed for the first time.


Sign in / Sign up

Export Citation Format

Share Document