scholarly journals Unlocking the Real Potential of Black Soldier Fly (Hermetia illucens) Larvae Protein Derivatives in Pet Diets

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4216
Author(s):  
Ange Mouithys-Mickalad ◽  
Nuria Martin Tome ◽  
Thomas Boogaard ◽  
Arpita Chakraborty ◽  
Didier Serteyn ◽  
...  

Black soldier fly larvae (BSFL)-derived proteins are gaining popularity as sustainable pet food ingredients. According to the literature, these ingredients have strong antioxidant and antimicrobial activities. Due to the ability of BSFL protein derivatives to donate hydrogen atoms and/or electrons to counterpoise unstable molecules, they could possibly help in the prevention of osteoarthritis. During this study, the antiarthritic potential of BSFL protein derivatives was evaluated using the following assays: (1) proteinase inhibition, (2) erythrocyte membrane stability, (3) reactive oxygen species (ROS) production by activated macrophages, (4) ROS production by monocytes, and (5) cellular toxicity. Additionally, the glucosamine content of these ingredients was also evaluated. Chicken meal is commonly used in pet food formulations and was used as an industrial benchmark. The results obtained during this study demonstrated the strong antiarthritic potential of BSFL protein derivatives. We found that BSFL protein derivatives are not only useful in preventing the development of arthritis but could also help to cure it due to the presence of glucosamine. We also found that chicken meal could contribute to the development of arthritis by increasing ROS production by monocytes.

2021 ◽  
pp. 1-14
Author(s):  
J.B. Zhang ◽  
Y. Meng ◽  
J. Xu ◽  
C. Rensing ◽  
D. Wang

The effects of four antibiotics (metronidazole (M) levofloxacin (L), sodium ampicillin (A), and streptomycin sulphate (S)) and their pair-wise combinations at three doses on the development and intestinal bacterial diversity of the black soldier fly (BSF; Hermetia illucens) larvae were studied. At a low dose M and L were able to inhibit larval growth. At a high dose, all antibiotics were shown to inhibit larval growth. However, the pair-wise combinational use of the antibiotics did not effectively enhance the inhibitory effect. The gut bacterial diversity of the normal control (NC) was significantly higher than the antibiotic-treated groups with 737 operational taxonomic units (OTUs) from the larval guts of NC, compared to 305 and 227 from ML and AS. The number of anaerobic bacteria in ML was significantly lower than in NC and AS, with the relative abundance of OTUs from larval guts of ML being only about 0.01, compared to 0.4 for NC and 0.15 for AS. These results indicated that antibiotics at the experimental concentration did not affect the palatability of food for insects, but they would affect the diversity of food and intestinal microorganisms of BSF larvae, and the inhibitory effect of antibiotics on growth and development of BSF larvae displayed in this study was a complex effect.


2021 ◽  
Author(s):  
Yanxian Li ◽  
Karina Gajardo ◽  
Alexander Jaramillo-Torres ◽  
Trond M. Kortner ◽  
Ashild Krogdahl

Being part of fish's natural diets, insects have become a realistic, sustainable feed ingredient for aquaculture. While nutritional values of insects have been extensively studied in various fish species, their impact on the fish microbiota remains to be fully explored. In an 8-week freshwater feeding trial, Atlantic salmon (Salmo salar) were fed either a commercially relevant reference diet or an insect meal diet wherein black soldier fly (Hermetia illucens) larvae meal comprised 60% of total ingredients. Microbiota of digesta and mucosa origin from the proximal and distal intestine were collected and profiled along with feed and water samples. The insect meal diet markedly modulated the salmon intestinal microbiota . Overall, the microbial diversity was lower in the digesta of salmon fed the insect meal diet but higher in the mucosa. A group of bacterial genera, dominated by members of the Bacillaceae family, was enriched in salmon fed the insect meal diet, which confirms our previous findings in a seawater feeding trial. We also found that microbiota in the intestine closely resembled that of the feeds but was distinct from the water microbiota. Notably, bacterial genera associated with the diet effects were present in the feeds as well. In conclusion, our results show consistent changes in the intestinal microbiota of Atlantic salmon fed diets containing black soldier fly larvae meal.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 722
Author(s):  
Atsushi Ido ◽  
Muhammad-Fariz-Zahir Ali ◽  
Takayuki Takahashi ◽  
Chiemi Miura ◽  
Takeshi Miura

Against a background of increased demand for fish meal (FM), black soldier fly larva is a promising alternative feed source for sustainable aquaculture. Yellowtail, the most popular farmed fish in Japan, is a carnivorous fish; therefore, it requires a high proportion of FM in its diet. This study represents the first example of yellowtail fed on a diet including insect meal as a replacement for FM. Partially defatted black soldier fly meal (PDBM) comprised 49.0% crude protein and 23.2% crude fat, while completely defatted black soldier fly meal (CDBM) contained less than 10% crude fat, as the same level as FM was achieved with defatting PDBM using hexane. In feeding trials, growth of the fish was reduced in accordance with PDBM content: 10%, 20%, and 30% in their diet. Although a diet including 8% CDBM (with the same protein composition as 10% PDBM) also resulted in decreased fish growth, growth with a diet including 16% CDBM (with the same protein composition as 20% PDBM) was significantly higher than that of 20% PDBM, and equivalent to that of 10% PDBM. Therefore, even 10% of partially or completely black soldier fly larvae meal in diets inhibited growth in juvenile yellowtail, and we found that removal of the fat fraction could improve fish growth.


2021 ◽  
Vol 8 ◽  
Author(s):  
Livio Penazzi ◽  
Achille Schiavone ◽  
Natalia Russo ◽  
Joana Nery ◽  
Emanuela Valle ◽  
...  

Growing attention is being directed toward insects as a novel and sustainable source of protein for pet food. The aim of the study was to evaluate nutrient digestibility of a diet containing black soldier fly larvae as its main protein source. Moreover, the purpose of the study was to compare the traditional in vivo total collection method with the in vivo marker method and in vitro digestibility method. Two isonitrogenous and isoenergetic dry diets containing either venison meal (CTRL diet) or black soldier fly larvae meal (BSF diet) as their primary sources of proteins were fed to six adult dogs, according to a Latin square design. The digestibility of nutrients was determined using both in vivo (“total collection” and “internal marker” approaches) and in vitro methods. The two diets showed similar nutrient digestibility values for dry matter, organic matter, ether extract, ash, and phosphorus. However, a statistical trend (p = 0.066) was observed indicating greater protein digestibility in the BSF diet compared with the CTRL diet. Calcium digestibility was higher in the BSF diet compared with the CTRL diet (p = 0.018). On the contrary, fiber digestibility was lower in the insect-based diet compared with the venison diet (p < 0.001). There was no difference between total collection and internal marker methods in the assessment of in vivo digestibility for any of the nutrients considered. The in vitro digestibility values for dry matter, organic matter, and crude protein, as well as the estimated in vivo digestibility of organic matter and crude protein by the means of the predictive equation, were aligned with the in vivo results, although in vitro estimations were consistently higher compared with those obtained by in vivo analysis. Digestibility analysis of a dog food containing insect meal as the sole source of protein (36.5% inclusion) showed promising results in terms of it presenting similar values as a meat-based diet, indicating its suitability as a sustainable protein source for pet food. Moreover, the study showed that both the in vivo marker method and the in vitro method could be possible alternatives to the traditional total collection method in digestibility trials.


animal ◽  
2018 ◽  
Vol 12 (8) ◽  
pp. 1672-1681 ◽  
Author(s):  
S. Mancini ◽  
I. Medina ◽  
V. Iaconisi ◽  
F. Gai ◽  
A. Basto ◽  
...  

2021 ◽  
Vol 13 (15) ◽  
pp. 8345
Author(s):  
Kieran Magee ◽  
Joe Halstead ◽  
Richard Small ◽  
Iain Young

One third of food produced globally is wasted. Disposal of this waste is costly and is an example of poor resource management in the face of elevated environmental concerns and increasing food demand. Providing this waste as feedstock for black soldier fly (Hermetia illucens) larvae (BSFL) has the potential for bio-conversion and valorisation by production of useful feed materials and fertilisers. We raised BSFL under optimal conditions (28 °C and 70% relative humidity) on seven UK pre-consumer food waste-stream materials: fish trimmings, sugar-beet pulp, bakery waste, fruit and vegetable waste, cheese waste, fish feed waste and brewer’s grains and yeast. The nutritional quality of the resulting BSFL meals and frass fertiliser were then analysed. In all cases, the volume of waste was reduced (37–79%) and meals containing high quality protein and lipid sources (44.1 ± 4.57% and 35.4 ± 4.12%, respectively) and frass with an NPK of 4.9-2.6-1.7 were produced. This shows the potential value of BSFL as a bio-convertor for the effective management of food waste.


2021 ◽  
pp. 101034
Author(s):  
M. Heuel ◽  
C. Sandrock ◽  
F. Leiber ◽  
A. Mathys ◽  
M. Gold ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Kristen L. Beck ◽  
Niina Haiminen ◽  
David Chambliss ◽  
Stefan Edlund ◽  
Mark Kunitomi ◽  
...  

AbstractIn this work, we hypothesized that shifts in the food microbiome can be used as an indicator of unexpected contaminants or environmental changes. To test this hypothesis, we sequenced the total RNA of 31 high protein powder (HPP) samples of poultry meal pet food ingredients. We developed a microbiome analysis pipeline employing a key eukaryotic matrix filtering step that improved microbe detection specificity to >99.96% during in silico validation. The pipeline identified 119 microbial genera per HPP sample on average with 65 genera present in all samples. The most abundant of these were Bacteroides, Clostridium, Lactococcus, Aeromonas, and Citrobacter. We also observed shifts in the microbial community corresponding to ingredient composition differences. When comparing culture-based results for Salmonella with total RNA sequencing, we found that Salmonella growth did not correlate with multiple sequence analyses. We conclude that microbiome sequencing is useful to characterize complex food microbial communities, while additional work is required for predicting specific species’ viability from total RNA sequencing.


2021 ◽  
pp. 101400
Author(s):  
Fernanda M. Tahamtani ◽  
Emma Ivarsson ◽  
Viktoria Wiklicky ◽  
Cecilia Lalander ◽  
Helena Wall ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document