scholarly journals Highly Stable Passively Q-Switched Erbium-Doped All-Fiber Laser Based on Niobium Diselenide Saturable Absorber

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4303
Author(s):  
Ping Hu ◽  
Jiajia Mao ◽  
Hongkun Nie ◽  
Ruihua Wang ◽  
Baitao Zhang ◽  
...  

A saturable absorber (SA) based on niobium diselenide (NbSe2), which is a layered transition metal dichalcogenide (TMD) in the VB group, is fabricated by the optically driven deposition method, and the related nonlinear optical properties are characterized. The modulation depth, saturable intensity, and nonsaturable loss of the as-prepared NbSe2 nanosheet-based SA are measured to be 16.2%, 0.76 MW/cm2, and 14%, respectively. By using the as-fabricated NbSe2 SA, a highly stable, passively Q-switched, erbium-doped, all-fiber laser is realized. The obtained shortest pulse width is 1.49 μs, with a pulse energy of 48.33 nJ at a center wavelength of 1560.38 nm. As far as we know, this is the shortest pulse duration ever obtained by an NbSe2 SA in a Q-switched fiber laser.

Author(s):  
Ezzatul Irradah Ismail ◽  
S Muhammad Ashraf Zolkopli ◽  
Muhammad Quisar Lokman ◽  
Hafizal Yahaya ◽  
Sulaiman Wadi Harun ◽  
...  

<span lang="EN-US">In this paper, we demonstrated a Q-switched erbium doped fiber laser (EDFL) incorporating Antimony (III) Telluride (Sb<sub>2</sub>Te<sub>3</sub>) in polyvinyl alchohol (PVA) as passive saturable absorber.  The saturable absorber were fabricated by dissolving Antimony (III) Telluride powder into PVA solution and dry in the ambient temperature for 48 hours. Then, 1 mm<sup>2</sup> x 1 mm<sup>2</sup> Sb<sub>2</sub>Te<sub>3</sub>-PVA film based saturable absorber were sandwiched in between FC/PC ferrule for Q-switched laser generation. The stable and self-started Q-switched laser operates at center wavelength 1560 nm with 3 dB bandwidth of 0.23 nm. The laser operates at pump power of 29.3 mW until 84.9 mW with repetition rate of 20.99 kHz to 89.29 kHz and pulse width of 13.95 µs to 5.10 µs. At maximum pump power, the laser able to achieve pulse energy of 62.72 nJ and high signal to noise ratio of 71.4</span>


2018 ◽  
Vol 39 (3) ◽  
pp. 307-310 ◽  
Author(s):  
A. K. W. Mansoor ◽  
Belal Ahmed Hamida ◽  
Tawfig Eltaif ◽  
E. I. Ismail ◽  
N. A. A. Kadir ◽  
...  

Abstract In this paper, passively Q-switched fiber laser is demonstrated and the laser output energy is stabilized by using 2.4 m Erbium-doped fiber laser (EDFL) with a graphene oxide used as saturable absorber (GO-SA). According to the experimental results in the Q-switched configuration, the laser cavity emits a wavelength centered at 1,558.75 nm, and by inserting the GO-SA into EDFL cavity, hence, the laser output energy around 1.68 nJ with an FWHM pulse width of 2.3 µs at 123.5 kHz was achieved.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Benhai Wang ◽  
Haobin Han ◽  
Lijun Yu ◽  
Yueyue Wang ◽  
Chaoqing Dai

Abstract Recently, in addition to exploring the application of new saturable absorber devices in fiber lasers, soliton dynamics has also become a focus of current research. In this article, we report an ultrashort pulse fiber laser based on VSe2/GO nanocomposite and verify the formation process of soliton and soliton molecules by the numerical simulation. The prepared VSe2/GO-based device shows excellent saturable absorption characteristics with a modulation depth of 14.3% and a saturation absorption intensity of 0.93 MW/cm2. The conventional soliton is obtained with pulse width of 573 fs, which is currently the narrowest pulse width based on VSe2-related material, and has a signal-to-noise ratio of 60.4 dB. In addition, the soliton molecules are realized based on the VSe2/GO for the first time and have a pulse interval of ∼2.2 ps. We study the soliton dynamics through numerical simulation and reveal that before the formation of the soliton, it undergoes multiple nonlinear stages, such as soliton mode-locking, soliton splitting, and soliton oscillation. Furthermore, the results of numerical simulation are agreed well with the experimental data. These results indicate that the VSe2/GO might be another promising saturable absorber material for ultrafast photonics, and deepen the understanding of soliton dynamics in ultrafast fiber lasers.


2014 ◽  
Vol 23 (01) ◽  
pp. 1450009 ◽  
Author(s):  
N. Kasim ◽  
C. L. Anyi ◽  
H. Haris ◽  
F. Ahmad ◽  
N. M. Ali ◽  
...  

The performance of a stable passive Q-switched Erbium Ytterbium co-doped fiber laser (EYFL) operating at 1532.5 nm is demonstrated using a multi-layer graphene film based saturable absorber. The graphene is synthesized by electrochemical exfoliation of graphite at room temperature in 1% sodium dodecyl sulphate (SDS) aqueous solution. Graphene flakes obtained from the process are mixed with polyethylene oxide (PEO) as the host polymer to produce free standing composite thin film which acts as a passive Q-switcher in the EYFL ring cavity. At 980 nm pump power of 44 mW, the EYFL generates optical pulse train with a repetition rate of 12.33 kHz and pulse width of 9.36 μs. The highest energy of 5.8 nJ and the lowest pulse width of 2.68 μs are achieved at the maximum pump power of 78 mW. Further increase in the pump power is expected to further improve both the pulse energy and pulse width.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 334
Author(s):  
Yushazlina R. Yuzaile ◽  
Noor A. Awang ◽  
Zahariah Zakaria ◽  
Noor U.H.H Zalkepali ◽  
Amirah A. Latif ◽  
...  

This paper reported a successful demonstration on Q-switched fiber laser by using graphite as saturable absorber (SA). The graphite is deposited on the fiber ferrule through a simple mechanical exfoliation method. The modulation depth of the graphite SA is 19.2% with a saturation intensity of 85 MW/cm². The maximum achievable pulse repetition rates and pulse width are 42.41 kHz and 3.40 μs respectively. Meanwhile, its optical signal-to-noise ratio is about 50.81 dB. The Q-switched pulses have the maximum pulse energy of 5.84 nJ. These outcomes demonstrated that a stable output of passively Q-switched fiber laser is produced and can be applied for various optical fiber applications.


2021 ◽  
Vol 11 (21) ◽  
pp. 9871
Author(s):  
Mijin Kim ◽  
Jeong Je Kim ◽  
Sang Bae Lee ◽  
Dal-Young Kim ◽  
Kwanil Lee ◽  
...  

We demonstrate a passively mode-locked fiber laser using aqueous DNA solution as a saturable absorber (SA), with broadband pulse laser emission from 1 to 1.5 µm. The mode-locked laser with erbium-doped fiber as the gain material has a center wavelength of 1563 nm, a 3 dB bandwidth of 3.9 nm, and a pulse width of 822 fs, whereas the laser with ytterbium-doped fiber as the gain material and an identical DNA aqueous SA has a center wavelength of 1037 nm, a 3 dB bandwidth of 5.04 nm, and a pulse width of 250 ps. The proposed laser, which is simple and cost effective to fabricate, exhibits excellent long-term stability as well as thermal stability during high-power operation. This mode-locked laser scheme with a liquid-phase DNA component has the potential to provide in-depth understanding of the optical nonlinearity and usefulness of DNA.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 313
Author(s):  
Noor U.H.H. Zalkepali ◽  
Noor A. Awang ◽  
Yushazlina R. Yuzaile ◽  
Amirah A . Latif ◽  
Fauzan Ahmad ◽  
...  

This paper demonstrates on an antimony telluride (Sb2Te3) thin film sandwiched between two fiber ferrule as saturable absorber for Q-switched pulsed Erbium doped fiber (EDF) laser. The saturable absorber is fabricated by dissolving Antimony (III) Telluride powder into PVA solution and dry in the ambient temperature for 48 hours. Then, 1 mm2 x 1 mm2 Sb2Te3-PVA film based saturable absorber is sandwiched in between FC/PC ferrule for Q-switched laser generation. The modulation depth of the Sb2Te3 is measured as 28.01% with input intensity 0.02 MW/cm2. The developed passive saturable absorber integrated in EDF laser in ring cavity and the characterised pulse is with repetition rates of 30.21 kHz, shortest pulse width of 3.26 µs and signal-noise-ratio (SNR) of 42 dB. The maximum output pulse energy is achieved at pump power 69.5 mW with 29.5 nJ and the output power 0.89 mW.


Sign in / Sign up

Export Citation Format

Share Document