scholarly journals Porous Aerogels and Adsorption of Pollutants from Water and Air: A Review

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4440
Author(s):  
Paola Franco ◽  
Stefano Cardea ◽  
Antonio Tabernero ◽  
Iolanda De Marco

Aerogels are open, three-dimensional, porous materials characterized by outstanding properties, such as low density, high porosity, and high surface area. They have been used in various fields as adsorbents, catalysts, materials for thermal insulation, or matrices for drug delivery. Aerogels have been successfully used for environmental applications to eliminate toxic and harmful substances—such as metal ions or organic dyes—contained in wastewater, and pollutants—including aromatic or oxygenated volatile organic compounds (VOCs)—contained in the air. This updated review on the use of different aerogels—for instance, graphene oxide-, cellulose-, chitosan-, and silica-based aerogels—provides information on their various applications in removing pollutants, the results obtained, and potential future developments.

2020 ◽  
Author(s):  
Hui Li, ◽  
ding jiehua ◽  
Xinyu Guan ◽  
Fengqian Chen ◽  
Cuiyan Li ◽  
...  

Three-dimensional (3D) covalent organic frameworks (COFs) are excellent porous crystalline polymers for numerous applications, but their building units and topological nets have been limited. Herein we report the first 3D large-pore COF with <b>stp</b> topology constructed with a 6-connected triptycene-based monomer. The new COF (termed JUC-564) has high surface area (up to 3300 m<sup>2 </sup>g<sup>-1</sup>), the largest pore (43 Å) among 3D COFs, and record-breaking low density in crystalline materials (0.108 g cm<sup>-3</sup>). The large pore size of JUC-564 is confirmed by the incorporation of a large protein. This study expands the structural varieties of 3D COFs as well as their applications for adsorption and separation of large biological molecules.


2016 ◽  
Vol 852 ◽  
pp. 1349-1355
Author(s):  
Jia Yi Zhu ◽  
Xi Yang ◽  
Zhi Bing Fu ◽  
Chao Yang Wang ◽  
Wei Dong Wu ◽  
...  

The ultra-low density carbon aerogel, as low as 20 mg/cm3, was fabricated by pyrolysis of the organic aerogel formed by aqueous condensation of resorcinol and formaldehyde. Its surface area was as high as 1783 m2/g and it was used for investigation of electrochemical capacitive behaviours. The ultra-low density carbon aerogel displayed capacitive performance (110 F/g at 0.2 A/g) in 6 M KOH aqueous solution. Additionally, over 98% of the initial capacitance was retained after repeating the cyclic voltammetry test for 1000 cycles. The electrochemical performance might be attributed to the combination of three dimensional “opened” structure and high surface area of the carbon aerogel.


2020 ◽  
Author(s):  
Hui Li, ◽  
ding jiehua ◽  
Xinyu Guan ◽  
Fengqian Chen ◽  
Cuiyan Li ◽  
...  

Three-dimensional (3D) covalent organic frameworks (COFs) are excellent porous crystalline polymers for numerous applications, but their building units and topological nets have been limited. Herein we report the first 3D large-pore COF with <b>stp</b> topology constructed with a 6-connected triptycene-based monomer. The new COF (termed JUC-564) has high surface area (up to 3300 m<sup>2 </sup>g<sup>-1</sup>), the largest pore (43 Å) among 3D COFs, and record-breaking low density in crystalline materials (0.108 g cm<sup>-3</sup>). The large pore size of JUC-564 is confirmed by the incorporation of a large protein. This study expands the structural varieties of 3D COFs as well as their applications for adsorption and separation of large biological molecules.


2011 ◽  
Vol 217-218 ◽  
pp. 1165-1169
Author(s):  
Yu Tie Bi ◽  
Hong Bo Ren ◽  
Lin Zhang

Copper oxide monolithic aerogel was prepared by sol–gel method using inorganic salt as precursor, ethanol as the solvent, and propylene oxide as the gelation agent. Calcination of the as-prepared aerogels at different temperatures induced a phase change which resulted in the formation of a mesoporous copper oxide aerogels. Field emission scanning electron microscopy (FESEM), Highresolution transmission electron microscopy (HRTEM), and Brunauer-Emmett-Teller(BET) methods were used to characterize the as-prepared aerogels. The combined results indicated that the as-prepared CuO aerogel has high porosity, high surface area, and low density. The X-ray diffraction (XRD) patterns show that the as-prepared CuO aerogel is highly crystalline and is identified to be predominantly copper chloride hydroxide, Cu2Cl(OH)3。


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 246
Author(s):  
Samsul Rizal ◽  
Esam Bashir Yahya ◽  
Abdul Khalil H.P.S. ◽  
C. K. Abdullah ◽  
Marwan Marwan ◽  
...  

Biopolymer-based aerogels are open three-dimensional porous materials that are characterized by outstanding properties, such as a low density, high porosity and high surface area, in addition to their biocompatibility and non-cytotoxicity. Here we fabricated pure and binary blended aerogels from cellulose nanofibers (CNFs) and chitosan (CS), using a chemical-free approach that consists of high-pressure homogenization and freeze-drying. The prepared aerogels showed a different porosity and density, depending on the material and mixing ratio. The porosity and density of the aerogels ranged from 99.1 to 90.8% and from 0.0081 to 0.141 g/cm3, respectively. Pure CNFs aerogel had the highest porosity and lightest density, but it showed poor mechanical properties and a high water absorption capacity. Mixing CS with CNFs significantly enhance the mechanical properties and reduce its water uptake. The two investigated ratios of aerogel blends had superior mechanical and thermal properties over the single-material aerogels, in addition to reduced water uptake and 2-log antibacterial activity. This green fabrication and chemical-free approach could have great potential in the preparation of biopolymeric scaffolds for different biomedical applications, such as tissue-engineering scaffolds.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1456
Author(s):  
Yujie Fu ◽  
You Zhang ◽  
Qi Xin ◽  
Zhong Zheng ◽  
Yu Zhang ◽  
...  

Chlorinated volatile organic compounds (CVOCs) are vital environmental concerns due to their low biodegradability and long-term persistence. Catalytic combustion technology is one of the more commonly used technologies for the treatment of CVOCs. Catalysts with high low-temperature activity, superior selectivity of non-toxic products, and resistance to chlorine poisoning are desirable. Here we adopted a plasma treatment method to synthesize a tin-doped titania loaded with ruthenium dioxide (RuO2) catalyst, possessing enhanced activity (T90%, the temperature at which 90% of dichloromethane (DCM) is decomposed, is 262 °C) compared to the catalyst prepared by the conventional calcination method. As revealed by transmission electron microscopy, X-ray diffraction, N2 adsorption, X-ray photoelectron spectroscopy, and hydrogen temperature-programmed reduction, the high surface area of the tin-doped titania catalyst and the enhanced dispersion and surface oxidation of RuO2 induced by plasma treatment were found to be the main factors determining excellent catalytic activities.


Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 40 ◽  
Author(s):  
Kang-Kai Liu ◽  
Biao Jin ◽  
Long-Yue Meng

In this study, three-dimensional glucose/graphene-based aerogels (G/GAs) were synthesized using the hydrothermal reduction and CO2 activation method. Graphene oxide (GO) was used as a matrix, and glucose was used as a binder for the orientation of the GO morphology in an aqueous media. We determined that G/GAs exhibited narrow mesopore size distribution, a high surface area (763 m2 g−1), and hierarchical macroporous and mesoporous structures. These features contributed to G/GAs being promising adsorbents for the removal of CO2 (76.5 mg g−1 at 298 K), CH4 (16.8 mg g−1 at 298 K), and H2 (12.1 mg g−1 at 77 K). G/GAs presented excellent electrochemical performance, featuring a high specific capacitance of 305.5 F g−1 at 1 A g−1, and good cyclic stability of 98.5% retention after 10,000 consecutive charge-discharge cycles at 10 A g−1. This study provided an efficient approach for preparing graphene aerogels exhibiting hierarchical porosity for gas adsorption and supercapacitors.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Garima Rathee ◽  
Amardeep Awasthi ◽  
Damini Sood ◽  
Ravi Tomar ◽  
Vartika Tomar ◽  
...  

Abstract It would be of great significance to introduce a new biocompatible Layered Double Hydroxide (LDH) for the efficient remediation of wastewater. Herein, we designed a facile, biocompatible and environmental friendly layered double hydroxide (LDH) of NiFeTi for the very first time by the hydrothermal route. The materialization of NiFeTi LDH was confirmed by FTIR, XRD and Raman studies. BET results revealed the high surface area (106 m2/g) and the morphological studies (FESEM and TEM) portrayed the sheets-like structure of NiFeTi nanoparticles. The material so obtained was employed as an efficient adsorbent for the removal of organic dyes from synthetic waste water. The dye removal study showed >96% efficiency for the removal of methyl orange, congo red, methyl blue and orange G, which revealed the superiority of material for decontamination of waste water. The maximum removal (90%) of dyes was attained within 2 min of initiation of the adsorption process which supported the ultrafast removal efficiency. This ultrafast removal efficiency was attributed to high surface area and large concentration of -OH and CO32− groups present in NiFeTi LDH. In addition, the reusability was also performed up to three cycles with 96, 90 and 88% efficiency for methyl orange. Furthermore, the biocompatibility test on MHS cell lines were also carried which revealed the non-toxic nature of NiFeTi LDH at lower concentration (100% cell viability at 15.6 μg/ml). Overall, we offer a facile surfactant free method for the synthesis of NiFeTi LDH which is efficient for decontamination of anionic dyes from water and also non-toxic.


Author(s):  
Ketki Lichade ◽  
Yizhou Jiang ◽  
Yayue Pan

Abstract Recently, many studies have investigated additive manufacturing of hierarchical surfaces with high surface area/volume (SA/V) ratios, and their performance has been characterized for applications in next-generation functional devices. Despite recent advances, it remains challenging to design and manufacture high SA/V ratio structures with desired functionalities. In this study, we established the complex correlations among the SA/V ratio, surface structure geometry, functionality, and manufacturability in the Two-Photon Polymerization (TPP) process. Inspired by numerous natural structures, we proposed a 3-level hierarchical structure design along with the mathematical modeling of the SA/V ratio. Geometric and manufacturing constraints were modeled to create well-defined three-dimensional hierarchically structured surfaces with a high accuracy. A process flowchart was developed to design the proposed surface structures to achieve the target functionality, SA/V ratio, and geometric accuracy. Surfaces with varied SA/V ratios and hierarchy levels were designed and printed. The wettability and antireflection properties of the fabricated surfaces were characterized. It was observed that the wetting and antireflection properties of the 3-level design could be easily tailored by adjusting the design parameter settings and hierarchy levels. Furthermore, the proposed surface structure could change a naturally-hydrophilic surface to near-superhydrophobic. Geometrical light trapping effects were enabled and the antireflection property could be significantly enhanced (&gt;80% less reflection) by the proposed hierarchical surface structures. Experimental results implied the great potential of the proposed surface structures for various applications such as microfluidics, optics, energy, and interfaces.


Sign in / Sign up

Export Citation Format

Share Document