scholarly journals Pyridine Scaffolds, Phenols and Derivatives of Azo Moiety: Current Therapeutic Perspectives

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4872
Author(s):  
Tehreem Tahir ◽  
Muhammad Ashfaq ◽  
Muhammad Saleem ◽  
Muhammad Rafiq ◽  
Mirza Imran Shahzad ◽  
...  

Synthetic heterocyclic compounds have incredible potential against different diseases; pyridines, phenolic compounds and the derivatives of azo moiety have shown excellent antimicrobial, antiviral, antidiabetic, anti-melanogenic, anti-ulcer, anticancer, anti-mycobacterial, anti-inflammatory, DNA binding and chemosensing activities. In the present review, the above-mentioned activities of the nitrogen-containing heterocyclic compounds (pyridines), hydroxyl (phenols) and azo derivatives are discussed with reference to the minimum inhibitory concentration and structure–activity relationship, which clearly indicate that the presence of nitrogen in the phenyl ring; in addition, the hydroxyl substituent and the incorporation of a diazo group is crucial for the improved efficacies of the compounds in probing different diseases. The comparison was made with the reported drugs and new synthetic derivatives that showed recent therapeutic perspectives made in the last five years.

1994 ◽  
Vol 59 (1) ◽  
pp. 234-238 ◽  
Author(s):  
Karel Waisser ◽  
Jiří Kuneš ◽  
Alexandr Hrabálek ◽  
Želmíra Odlerová

Oxidation of 1-aryltetrazole-5-thiols afforded bis(1-aryltetrazol-5-yl) disulfides. The compounds were tested for antimycobacterial activity against Mycobacterium tuberculosis, M. kansasii, M. avium and M. fortuitum. In the case of M. tuberculosis, the logarithm of minimum inhibitory concentration showed a parabolic dependence on hydrophobic substituent constants. Although the compounds exhibited low to medium activity, the most active derivative, bis(4-chlorophenyltetrazol-5-yl) disulfide (III) was more effective against atypical strains than are the commercial tuberculostatics used as standards.


2021 ◽  
Vol 45 (11-12) ◽  
pp. 1093-1099
Author(s):  
Abdulrhman Alsayari ◽  
Yahya I Asiri ◽  
Abdullatif Bin Muhsinah ◽  
Mohd. Zaheen Hassan

We report the design, synthesis, and in vitro antimicrobial evaluation of functionalized pyrazoles containing a hydrazono/diazenyl moiety. Among these newly synthesized derivatives, 4-[2-(4-chlorophenyl)hydrazono]-5-methyl-2-[2-(naphthalen-2-yloxy)acetyl]-2,4-dihydro-3 H-pyrazol-3-one is a promising antimicrobial agent against Staphylococcus aureus (minimum inhibitory concentration 0.19 μg mL−1). Structure–activity relationship studies reveal that the electronic environment on the distal phenyl ring has a considerable effect on the antimicrobial potential of the hybrid analogues. Molecular docking studies into the active site of S. aureus dihydrofolate reductase also prove the usefulness of hybridizing a pyrazole moiety with azo and hydrazo groups in the design of new antimicrobial agents.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3952 ◽  
Author(s):  
Sirakanyan ◽  
Spinelli ◽  
Geronikaki ◽  
Hakobyan ◽  
Sahakyan ◽  
...  

Continuing our research in the field of new heterocyclic compounds, herein we report on the synthesis and antitumor activity of new amino derivatives of pyrido[3’,2’:4,5](furo)thieno[3,2-d]pyrimidines as well as of two new heterocyclic systems: furo[2–e]imidazo[1,2-c]pyrimidine and furo[2,3-e]pyrimido[1,2-c]pyrimidine. Thus, by refluxing the 8-chloro derivatives of pyrido[3’,2’:4,5]thieno(furo)[3,2-d]pyrimidines with various amines, the relevant pyrido[3’,2’:4,5]thieno(furo)[3,2-d]pyrimidin-8-amines were obtained. Further, the cyclization of some amines under the action of phosphorus oxychloride led to the formation of new heterorings: imidazo[1,2-c]pyrimidine and pyrimido[1,2-c]pyrimidine. The possible antitumor activity of the newly synthesized compounds was evaluated in vitro. The biological tests evidenced that some of them showed pronounced antitumor activity. A study of the structure–activity relationships revealed that the compound activity depended mostly on the nature of the amine fragments. A docking analysis was also performed for the most active compounds.


Author(s):  
Mohammad Hassan Moshafi ◽  
Ali Peymani ◽  
Alireza Foroumadi ◽  
Mohammad Reza Zabihi ◽  
Farzad Doostishoar

Introduction: Nitrofurans and nitroimidazoles are broad-spectrum antimicrobial agents, which affect the microbial DNA. The aim of the present study was to evaluate the new derivatives of these two groups of antimicrobials against certain Gram-positive and Gram-negative bacterial strains. Materials and Methods: Seven new derivatives of nitrofurans and nitroimidazoles were synthesized, and 6.4 mg of each derivative was dissolved in dimethyl sulfoxide. Then, 8 serial dilutions (0.5, 1, 2, 4, 8, 16, 32, and 64 μg/ml) of each derivative was prepared using Muller-Hinton broth, and the minimum inhibitory concentration for each derivative was measured and compared to ciprofloxacin (standard). Results: All the derivatives had no antibacterial effects against Gram-negative bacteria (minimum inhibitory concentration > 64 μg/ml); only 2-(5-nitro-2-furyl)-5-(n-pentylsulfunyl)-1,3,4-thiadiazole exhibited mild antibacterial effects against Klebsiella pneumonia (minimum inhibitory concentration of 16-32 μg/ml). The antibacterial effects of the derivatives against Gram-positive bacteria also showed variations from complete inhibition of the growth of Staphylococcus epidermidis and Bacillus subtilis (minimum inhibitory concentration < 0.5 μg/ml) by 2-(5-nitro-2-furyl)-5-(n-buthylthio)-1,3,4-thiadiazole to no inhibition of S. epidermidis and streptococcus pyogenes. Conclusion: These compounds have weak antibacterial effects; only two derivatives showed antibacterial effects similar to that of the positive control.


2014 ◽  
Author(s):  
N. Susantha Chandrasekera ◽  
Mai A Bailey ◽  
Megan Files ◽  
Torey Alling ◽  
Stephanie K Florio ◽  
...  

We demonstrated that the 3-substituted benzothiophene-1,1-dioxide class of compounds are effective inhibitors of Mycobacterium tuberculosis growth under aerobic conditions. We examined substitution at the C-3 position of the benzothiophene-1,1-dioxide series systematically to delineate structure-activity relationships influencing potency and cytotoxicity. Compounds were tested for inhibitory activity against virulent M. tuberculosis and eukaryotic cells. The tetrazole substituent was most potent, with a minimum inhibitory concentration (MIC) of 2.6 µM. However, cytotoxicity was noted with even more potency (Vero cell TC50 = 0.1 µM). Oxadiazoles had good anti-tubercular activity (MICs of 3–8 µM), but imidazoles, thiadiazoles and thiazoles had little activity. Cytotoxicity did not track with anti-tubercular activity, suggesting different targets or mode of action between bacterial and eukaryotic cells. However, we were unable to derive analogs without cytotoxicity; all compounds synthesized were cytotoxic (TC50 of 0.1–5 µM). We conclude that cytotoxicity is a liability in this series precluding it from further development. However, the series has potent anti-tubercular activity and future efforts towards identifying the mode of action could result in the identification of novel drug targets.


2014 ◽  
Author(s):  
N. Susantha Chandrasekera ◽  
Mai A Bailey ◽  
Megan Files ◽  
Torey Alling ◽  
Stephanie K Florio ◽  
...  

We demonstrated that the 3-substituted benzothiophene-1,1-dioxide class of compounds are effective inhibitors of Mycobacterium tuberculosis growth under aerobic conditions. We examined substitution at the C-3 position of the benzothiophene-1,1-dioxide series systematically to delineate structure-activity relationships influencing potency and cytotoxicity. Compounds were tested for inhibitory activity against virulent M. tuberculosis and eukaryotic cells. The tetrazole substituent was most potent, with a minimum inhibitory concentration (MIC) of 2.6 µM. However, cytotoxicity was noted with even more potency (Vero cell TC50 = 0.1 µM). Oxadiazoles had good anti-tubercular activity (MICs of 3–8 µM), but imidazoles, thiadiazoles and thiazoles had little activity. Cytotoxicity did not track with anti-tubercular activity, suggesting different targets or mode of action between bacterial and eukaryotic cells. However, we were unable to derive analogs without cytotoxicity; all compounds synthesized were cytotoxic (TC50 of 0.1–5 µM). We conclude that cytotoxicity is a liability in this series precluding it from further development. However, the series has potent anti-tubercular activity and future efforts towards identifying the mode of action could result in the identification of novel drug targets.


2019 ◽  
Vol 11 (24) ◽  
pp. 3109-3124
Author(s):  
Macarena Funes Chabán ◽  
Antonia I Antoniou ◽  
Catherine Karagianni ◽  
Dimitra Toumpa ◽  
Mariana Belén Joray ◽  
...  

Aim: To find alternative compounds against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA), novel derivatives from dehydroabietic acid were synthesized. Methods & results: Compound 12 was the most effective against 15 MRSA and 11 MSSA with minimum inhibitory concentration values ranging from 3.9 to 15.6 μg/ml. Although less active than 12, compound 11, followed by 25 and 13, also exhibited anti-staphylococcal activity. Additional studies showed that compound 12 is devoid of toxic effect on non-target cells. A structure–activity relationship study revealed that an oxime at C-13 together with a hydroxyl at C-12 could play a key role in the activity. Conclusion: These structures, in particular compound 12, could arise as templates for the development of agents against MRSA and MSSA.


2020 ◽  
Vol 20 (1) ◽  
pp. 4-28
Author(s):  
Tarawanti Verma ◽  
Manish Sinha ◽  
Nitin Bansal

Benzene is a six-membered hydrocarbon ring system and if three carbon-hydrogen units of benzene ring are replaced by nitrogen atoms then triazine is formed. Triazines are present in three isomeric forms 1,2,3- triazine, 1,2,4-triazine, and 1,3,5-triazine according to the position of the nitrogen atom. These are weak bases having weaker resonance energy than benzene, so nucleophilic substitution is preferred than electrophilic substitution. Triazine is an interesting class of heterocyclic compounds in medicinal chemistry. Numerous synthetic derivatives of triazine have been prepared and evaluated for a wide spectrum of biological activities in different models with desired findings such as antibacterial, antifungal, anti-cancer, antiviral, antimalarial, antiinflammatory, antiulcer, anticonvulsant, antimicrobial, insecticidal and herbicidal agents. Triazine analogs have exposed potent pharmacological activity. So, triazine nucleus may be considered as an interesting core moiety for researchers for the development of future drugs.


2019 ◽  
Vol 4 (2) ◽  
pp. 94-100
Author(s):  
Vishwa Deepak Tripathi ◽  
Nisha Saxena

A library of new dihydropyrazole derivatives have been synthesized from well designed curcumin analogues by reaction of chalcone derivatives with phenylhydrazine. All the synthesized compounds were characterized by spectroscopic (1H and 13C NMR, IR spectra), spectrometric (Mass spectra) data and elemental analysis. Dihydro-pyrazoles exhibited characteristic dd (double doublet) due to presence of optically active carbon of pyrazole ring. All the synthesized compounds were also evaluated for their antifungal potential against six different fungal starins. Evaluated heterocyles showed potent inhibitory property against tested fungal strains with minimum inhibitory concentration (MIC) values upto 3.12 μg/mL. Heterocyles with nitro and methoxy substitutions were showing best antifungal activities. Among 20 different derivatives tested for biological activity SAR has been developed between the various substitutions at phenyl ring of synthesized heterocycles.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Grady L. Nelson ◽  
Michael J. Williams ◽  
Shirisha Jonnalagadda ◽  
Mohammad A. Alam ◽  
Gautam Mereddy ◽  
...  

Allylic acetates derived from Baylis-Hillman reaction undergo efficient nucleophilic isomerization with imidazoles and triazoles to provide imidazolylmethyl and triazolylmethyl cinnamates stereoselectively. Antifungal evaluation of these derivatives against Cryptococcus neoformans exhibits good minimum inhibitory concentration values. These compounds exhibit low toxicity in proliferating MCF-7 breast cancer cell line. Structure activity relationship studies indicate that halogenated aromatic derivatives provide better antifungal activity.


Sign in / Sign up

Export Citation Format

Share Document